October 2017

You are browsing the site archives for October 2017.

Storage and Transport of ESD Sensitive Items

In our last post, we talked about the ESD protective packaging requirements for ESD sensitive items and provided you with 6 steps to choose the correct type of packaging. We thought today we could go in a little bit more detail and introduce you to some types of packaging and how to use them. If you read our recent post on Tips to Fight ESD, you will remember how important it is to protect your ESD sensitive items when leaving an EPA. Yet, too often we see customers who have the perfect EPA, but when it comes to transporting and storing their precious components, it’s all falling apart.

Packaging required for transporting and storing ESD sensitive items
During storage and transportation outside of an EPA, it is recommended that ESD sensitive components and assemblies are enclosed in packaging that possesses the ESD control property of shielding. See our last post for more details.

Remember:

  • In ‘shielding’ we utilize the fact that electrostatic charges and discharges take the path of least resistance.
  • The charge will be either positive or negative; otherwise the charge will balance out and there will be no charge.
  • Charges repel so electrostatic charges will reside on the outer surface.

The Faraday Cage effect
A Faraday Cage effect can protect ESD sensitive items in a shielding bag or other container with a shielding layer. To complete the enclosure, make sure to place lids on boxes or containers and close shielding bags.

Cover must be in place to create Faraday Cage and shield contents.

Types of shielding packaging
The below list gives a few examples of what types of shielding packaging is available on the market. This list is by no means complete; there are many different options out there – just make sure the specifications state “shielding” properties.

  • Metal-In Shielding Bags
    ESD bags which protect ESD sensitive items. The ESD shielding limits energy penetration from electrostatic charges and discharge. They offer good see-through clarity. Available with and without zipper.

    Example of a Metal-In Shielding Bag – Click here for more information
  • Metal-Out Shielding Bags
    Integral antistatic and low tribocharging bags which will not electrostatically charge contents during movement. Bags have an aluminium metal outer layer of laminated film. Available with and without zipper.

    Example of a Metal-Out Shielding Bag – Click here for more information
  • Moisture Barrier Bags
    Offer ESD and moisture protection and can be used to pack SMD reels or trays.

    Example of a Moisture Barrier Bag – Click here for more information
  • Cushioned Shielding Bags
    These bags combine the “Faraday Cage” and mechanical protection. They shield about twice as well as normal shielding bags of equivalent size.

    Example of a Cushioned Shielding Bag – Click here for more information

Additional options for storing ESD sensitive items
Do you have the following in place?

  • ESD flooring
  • Grounded personnel (using foot grounders)
  • Grounded racking

IF (and this is a BIG IF) the above requirements are fulfilled, you can use conductive bags or containers to store your ESD sensitive items. Conductive materials have a low electrical resistance so electrons flow easily across the surface. Charges will go to ground if bags or containers are handled by a grounded operator or are stored on a grounded surface.

Conductive materials come in many different shapes and forms:

Conductive Black Bags
Tough and puncture resistant bags which are made of linear polyethylene with carbon added. The bags are heat sealable.

Example of a Conductive Black Film – Click here for more information
  • Rigid Conductive Boxes
    Provide good ESD and mechanical protection. Boxes are supplied with or without high density foam for insertion of component leads or low density foam which acts as a cushioning material.
  • PCB Containers
    Are flat based and can be stacked. They are made of injection moulded conductive polypropylene.

Again, there are many more options available on the market so make sure you do your research.

Note: we do not recommend using conductive packaging to transport ESD sensitive devices. Also, pink antistatic and pink antistatic bubble bags are not suited for storing or transporting ESD sensitive components.

Final thoughts
Packaging with holes, tears or gaps should not be used as the contents may be able to extend outside the enclosure and lose their shielding as well as mechanical protection.

Also, do not staple ESD bags shut. The metal staple provides a conductive path from the outside of the ESD bag to the inside. The use of a metal staple would undermine the effectiveness of the ESD bag making a conductive path for charges outside the bag to charge or discharge to ESD sensitive components inside the bag. To close an ESD bag, it is recommended to heat seal or use ESD tape or labels after the opening of the bag has been folded over. Alternatively, you can use ESD bags with a zipper.

Defining ESD Protective Packaging Requirements

If your company has an ESD Control Program per ANSI/ESD S20.20 in place, you need to define ESD protective packaging for ESD sensitive items (ESDs).
The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
– Training
– Product Qualification
– Compliance Verification
– Grounding / Equipotential Bonding Systems
– Personnel Grounding
– ESD Protected Area (EPA) Requirements
– Packaging Systems
– Marking” [ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

But where do you start? Don’t panic – we’re here to help and we’ll be following the guidelines set-out in the ESD Standard.

Definition and Purpose of ESD Protective Packaging
ESD Protective Packaging covers any materials coming into direct contact with ESD sensitive devices during handling, shipping and storage. You don’t need to worry about secondary or exterior packaging unless it’s used for ESD protection purposes.
Packaging for ESD sensitive items is commonly derived by modifying existing packaging to prevent the packaging itself from causing static damage. The packaging generally retains physical and environmental protective qualities. ESD protective packaging has been modified further to prevent other sources of static electricity from damaging a packaged item.“ [ANSI/ESD S541 Foreword]

The fundamentals of ESD control include grounding all conductors in the EPA. ESD packaging will have special material composition to lower the resistance so that when grounded, electrostatic charges will be removed to ground thus protecting your ESD sensitive devices inside.
Transportation of electrostatic sensitive devices requires packaging that provides protection from electrostatic hazards in the transportation or storage system. In the case of an EPA designed with continuous grounding of all conductors and dissipative items (including personnel), packaging may not be necessary.” [ANSI/ESD S541 clause 6. Packaging Application Requirements]

Example of ESD Packaging

Packaging is to be determined for all material movements inside and outside of the ESD Protected Area (EPA). Best practice is to define the required packaging or material handling item on the product’s bill of materials. Remember: the ESD packaging is just as important as a component part.

Customer contract packaging can take precedence, but otherwise “the organization shall define ESD protective packaging requirements, both inside and outside the EPA per ANSI/ESD S541 or in accordance with the contract, purchase order, drawing or other documentation necessary to meet customer requirements.” [ANSI/ESD S20.20 clause 8.4 Packaging]

Choosing your ESD Protective Packaging
Numerous factors need to be taken into consideration when choosing your ESD protective packaging including the “environment and device sensitivity.” [ANSI/ESD S541 Annex A.1 Environment and Device Sensitivity]
It is best recommended to follow these 6 steps:

    1. Understand the product sensitivity
      You can gather information about the ESD sensitivity of an item by either measuring it in-house, contacting the manufacturer of the product or by analyzing published ESD sensitivity data.
    2. Determine the distribution environment for the packaged product
      Knowing the environment in which the product is shipped and how it will be handled is extremely important. Humidity and temperature are the main factors to consider when it comes to choosing the right type of packaging for your ESD sensitive items. If items are susceptible to moisture, a barrier material should be chosen to prevent excessive humidity exposure. On the other hand, condensation may occur inside the packaging if temperatures vary around the dew point of the established interior conditions. In those instances, desiccant should be put inside of the package or the air should be removed from the package before shipment.

A Moisture Barrier Bag – click here for more information

  1. Determine the type of packaging system that is best suited for the intended application
    The first step is to choose low charging or static dissipative materials when in contact with ESD sensitive devices. Many companies also require the packaging to protect the contents from a direct discharge or exposure to electric fields. In addition to these requirements, there are further questions that need to be asked:

    • Returnable or reusable packaging?
    • Disposable or one-time only packaging?
    • Aesthetic requirements for packaging?
  2. Select and test packaging materials
    Test methods are explained in ANSI/ESD S541 and will classify packaging materials as conductive, static dissipative or insulative.
  3. Design a packaging systemOnce the ESD sensitivity and distribution environment have been evaluated and available materials have been selected, the design of the packaging system can begin. Per the ANSI/ESD S541, the following general rules apply:
    • Inside an EPA:
      Packaging used within an EPA (that satisfies the minimum requirements of ANSI/ESD S20.20) shall be:

      • Low charge generation.
      • Dissipative or conductive materials for intimate contact.Items sensitive to < 100 volts human body model may need additional protection depending on application and program  plan requirements.”
        [ANSI/ESD S541 clause 6.1 Inside an EPA]
    • Outside an EPA:
      Transportation of sensitive products outside of an EPA shall require packaging that provides:

      • Low charge generation.
      • Dissipative or conductive materials for intimate contact.
      • A structure that provides electrostatic discharge shielding.
        [ANSI/ESD S541 clause 6.2 Outside an EPA]

    Example of ESD Packaging

    In addition to these guidelines, there may be additional factors that should be considered, e.g.:

    • Cost/value relationship: The cost of the packaging compared to the total value of the contents is important. Some companies choose less expensive packaging for less valuable parts.
    • Handling: If rigorous handling is expected, cushioned packaging may need to be considered.
  4. Test the final packaging design for effectiveness
    It is highly recommended to subject packages to the type of hazards that can be expected during shipments. These tests can, for example, involve the following:

    • High voltage discharges to the exterior of the packaging
    • Simulated over the road vibration
    • Drop tests
    • Environmental exposure

Final thoughts on ESD Protective Packaging
Now that you have an understanding of the factors to consider when choosing your ESD Protective Packaging, you’re ready to implement the above guidelines. ESD packaging comes in all sorts of shapes and forms so bear in mind to not just look at bags when deciding what type of packaging to choose.
Also, remember that ESD packaging should be marked. We’ll cover the specifics in a later post.