February 2018

You are browsing the site archives for February 2018.

Do your employees handle ESD-sensitive high-end components that are expensive to replace if they failed? If so, reducing the possibility of ESD damage is an important part of an ESD control program. Today’s blog post will look at one option of protecting your critical applications: Dual-Wire Wrist Straps.


In an ESD Protected Area (EPA), all surfaces, objects, people and ESD sensitive devices (ESDs) are kept at the same electric potential. This is achieved by using only ‘groundable’ materials that are then linked to ground.

This is in line with the requirements of ANSI/ESD S20.20: “The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
– Training
– Product Qualification
– Compliance Verification
– Grounding / Equipotential Bonding Systems
– Personnel Grounding
– ESD Protected Area (EPA) Requirements
– Packaging Systems
– Marking

[ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

Wrist Straps

Wrist straps are the most common personnel grounding device and are used to link people to ground. They are required if the operator is sitting.

A wrist strap is made up of two components:

  • A wrist band that is worn comfortably around your wrist and
  • A coiled cord that connects the band to a Common Grounding Point.

wristbandComponents of a Wrist Strap 

Dual-Wire Wrist Straps

Dual-Wire Wrist Straps have two conductors (compared to single-wire monitors which have only one conductor inside the insulation of the coiled cord). They offer a reduced risk of damaging ESD sensitive devices because if one conductor is severed or damaged, the operator still has a reliable path-to-ground with the second conductor. For that reason, they dual-wire wrist straps are generally used in critical applications.

Advantages of using Dual-Wire Wrist Straps:

  • Elimination of intermittent failures
  • Extension of wrist strap lifespan
  • Compatible with high performance continuous monitors

The MagSnap 360™ Dual-Wire Wrist Strap and Coil Cord –
more information

Dual-Wire Continuous Monitors

For maximum benefit, dual-wire wrist straps should be used together with dual-wire continuous monitors. Instead of connecting a coil cord directly to a common grounding point, the operator connects to a continuous monitor. The operator is grounded through the continuous monitor and the operator-to-ground connection is monitored.

The monitors provide operators with instant feedback on the status and functionality of their wrist strap and/or workstation. Continuous monitors detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components. The “intermittent” stage is characterized by sporadic failures as the cord is not completely severed. Once the cord is fully split, the “open” stage is reached.

WS-Aware-UseThe WS Aware Dual-Wire Workstation Monitor – more information

Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.” “Wrist strap checkers are usually placed in a central location for all to use.  Wrist straps are stressed and flexed to their limits at a workstation.  While a wrist strap is being checked, it is not stressed, as it would be under working conditions.  Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Resistance (or dual-wire) constant monitors are “… used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire.  If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC.  Pulsed DC signals were developed because of concerns about skin irritation.  However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]


Dual Polarity Technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications redundancy is built-in to have a backup if the primary source fails. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap still needs to be replaced immediately.

And there you have it: dual-wire wrist straps together with dual-wire continuous monitors offer better protection than intermittent monitoring or testing if you have a critical application.

Check-out the SCS Wrist Strap Selection Guide and Workstation Monitor Selection Guide to find the correct products for your application.

Imagine this scenario: you come to work in the morning and test your wrist strap per your ESD program’s recommended test frequency procedure. The wrist strap passes and you start work on your ESD sensitive devices. 3 hours later, when you come back from your tea break, you test your wrist strap again before continuing work and the wrist strap fails.

What to do? It is unknown when exactly the wrist strap failed in those 3 hours after your first periodic test in the morning and it is possible the devices you worked on during that time frame have been damaged. You don’t know which products have been damaged – latent defects are not visible and failures may only occur at a later time, reducing the potential reliability of the products.

Periodic testing is commonly used in an ESD program, however using continuous monitoring while working on those sensitive devices will alert the operator as soon as their wrist strap and/or workstation path-to-ground connection fails. Today’s blog post will highlight various benefits of continuous monitoring.


Wrist straps are considered the first line of ESD Control. They are used to link people to ground ensuring operators are kept at the same potential as surfaces, objects and ESD sensitive devices (ESDs). Before handling sensitive items, wrist straps need to be visually inspected and checked (while worn) which will alert the operator to potential faults.
Per ESD Handbook TR 20.20 paragraph Test Frequency, “Because wrist straps have a finite life, it is important to develop a test frequency that will guarantee integrity of the system. Typical test programs recommend that wrist straps that are used daily should be tested daily. However, if the products that are being produced are of such value that knowledge of a continuous, reliable ground is needed, then continuous monitoring should be considered or even required.

Continuous Monitoring

Continuous monitors come in different styles and sizes but are intended to be kept on the workstation. Some units just ‘sit’ on the bench; others are attached to the working surface matting; some can even be attached underneath the workbench so they don’t take away valuable workspace. Operators connect their wrist strap to the unit to allow for real-time continuous monitoring. If the wrist strap fails, the unit will alarm. Many continuous monitors also feature a parking snap providing a means for the operator to disconnect when leaving their workstation.

Types of Continuous Monitors

There are two different types of continuous monitors available:

  • Single-wire continuous monitors allow the use of any standard, single-wire wrist strap and coiled cord. The monitor / wrist strap system life-cycle costs are significantly lower compared to dual-wire systems. While they would not be suitable for the most critical applications, single-wire continuous monitors are an economical way to monitor both the operator’s wrist strap and/or workstation surface.
  • Dual-wire continuous monitors provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire continuous monitors provide redundancy because even if one dual-wire wrist strap conductor is severed, the operator still has a reliable path-to-ground with the other conductor. Dual-wire technology requires the use of dual-wire wrist straps and coiled cords.

Benefits of Continuous Monitors

 1. Instant Feedback

Continuous monitors provide operators with instant feedback on the status and functionality of their wrist strap. The instant an operator’s wrist strap or cord fails, the monitor will issue audible and visual (LEDs) alarms alerting the user and supervisor of the problem. The faulty wrist strap can be replaced with a new one from stock.

The SCS 724 Workstation Monitor in Use
The SCS 724 Workstation Monitor in Use

2. Monitoring of Operator AND Workstation

When the monitor is connected to an ESD working surface, the amount of current that flows is a function of the total resistance between the monitor and through the working surface to ground. When the resistance of the working surface is below a pre-set threshold*, the monitor will indicate good. Conversely, if the resistance level is high when compared to the monitor’s reference*, the unit will alarm. This is an integrating resistance measuring circuit, therefore it is relatively insensitive to externally induced electromagnetic fields.

*The resistance threshold limits can vary between brands and models (and can sometimes also be adjusted by the user) so make sure you do your homework before committing to a particular unit and check the limit meets your individual requirements.

724 Monitor Installation
Installing the SCS 724 Workstation Monitor to ground the worksurface

Some continuous monitors can monitor worksurface ground connections. A test signal is passed through the worksurface and ground connections. Discontinuity or over limit resistance changes cause the monitor to alarm.
Worksurface monitors test the electrical connection between the monitor, the worksurface, and the ground point. However, the monitor will not detect insulative contamination on the worksurface and test methods such as those outlined in ESD TR53 can be used to isolate this problem. ” [ESD TR20.20 Continuous Monitors Clause 18.4.2 Worksurface Ground Monitoring].

3. Detection of Initial Flex Fatigue

Unlike wrist strap testers, continuous monitors detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components.

Using the SCS Iron Man® Plus Monitor in conjunction with Dual-Wire Smocks
Using the SCS Iron Man® Plus Monitor in conjunction with Dual-Wire Smocks

During operation, wrist straps might be stressed and flexed to their limits at a workstation. While a wrist strap is being checked it is typically not stressed, as it would be under working conditions. Openings in the wire at the coiled cord’s strain relief are sometimes only detected under stress. Even if the wrist strap is working properly, a bad or intermittent ground connection will render the wrist strap system less than 100% effective.” [ESD TR20.20 Continuous Monitors Clause 18.2 Wrist Strap Checkers]

4. Elimination of Periodic Testing

Many customers are eliminating periodic touch testing of wrist straps and are utilizing continuous monitoring to better ensure that their products were manufactured in an ESD protected environment. Continuous monitors also eliminate the need for users to test wrist straps and log the results.

No more paper logs!

When using continuous monitoring, operators:

  • Don’t have to waste time queuing at a wrist strap test station before each shift.
  • Don’t have to remember to complete their daily test logs.


If your company manufactures products containing ESD sensitive items, you need to ask yourself “how important is the reliability of our products”? Sooner or later a wrist strap is going to fail. If your products are of such high value that you need to be 100% sure your operators are grounded at all times, then you should consider a continuous monitoring system.

Advantages of Continuous Monitors are plentiful:

  • Immediate feedback should a wrist strap fail
  • Monitoring of operators and work stations
  • Detection of split-second failures
  • Elimination of periodic testing

All of the above advantages of Continuous Monitors will lead to a reduction in overall costs.

Savings comes from:

  1. Eliminating time/labor required in verifying a wrist strap before handling ESDs
  2. Reducing damage to ESDs from broken wrist straps that may go unnoticed with standard wrist strap testers.

For more information and an overview of SCS Workstation Monitors, have a look at our Selection Guide.