How to Reduce the Risk of Damaging ESD Sensitive Devices in Critical Applications

Do your employees handle ESD-sensitive high-end components that are expensive to replace if they failed? If so, reducing the possibility of ESD damage is an important part of an ESD control program. Today’s blog post will look at one option of protecting your critical applications: Dual-Wire Wrist Straps.

Introduction

In an ESD Protected Area (EPA), all surfaces, objects, people and ESD sensitive devices (ESDs) are kept at the same electric potential. This is achieved by using only ‘groundable’ materials that are then linked to ground.

This is in line with the requirements of ANSI/ESD S20.20: “The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
– Training
– Product Qualification
– Compliance Verification
– Grounding / Equipotential Bonding Systems
– Personnel Grounding
– ESD Protected Area (EPA) Requirements
– Packaging Systems
– Marking

[ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

Wrist Straps

Wrist straps are the most common personnel grounding device and are used to link people to ground. They are required if the operator is sitting.

A wrist strap is made up of two components:

  • A wrist band that is worn comfortably around your wrist and
  • A coiled cord that connects the band to a Common Grounding Point.

wristbandComponents of a Wrist Strap 

Dual-Wire Wrist Straps

Dual-Wire Wrist Straps have two conductors (compared to single-wire monitors which have only one conductor inside the insulation of the coiled cord). They offer a reduced risk of damaging ESD sensitive devices because if one conductor is severed or damaged, the operator still has a reliable path-to-ground with the second conductor. For that reason, they dual-wire wrist straps are generally used in critical applications.

Advantages of using Dual-Wire Wrist Straps:

  • Elimination of intermittent failures
  • Extension of wrist strap lifespan
  • Compatible with high performance continuous monitors

 2231
The MagSnap 360™ Dual-Wire Wrist Strap and Coil Cord –
more information

Dual-Wire Continuous Monitors

For maximum benefit, dual-wire wrist straps should be used together with dual-wire continuous monitors. Instead of connecting a coil cord directly to a common grounding point, the operator connects to a continuous monitor. The operator is grounded through the continuous monitor and the operator-to-ground connection is monitored.

The monitors provide operators with instant feedback on the status and functionality of their wrist strap and/or workstation. Continuous monitors detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components. The “intermittent” stage is characterized by sporadic failures as the cord is not completely severed. Once the cord is fully split, the “open” stage is reached.

WS-Aware-UseThe WS Aware Dual-Wire Workstation Monitor – more information


Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.” “Wrist strap checkers are usually placed in a central location for all to use.  Wrist straps are stressed and flexed to their limits at a workstation.  While a wrist strap is being checked, it is not stressed, as it would be under working conditions.  Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Resistance (or dual-wire) constant monitors are “… used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire.  If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC.  Pulsed DC signals were developed because of concerns about skin irritation.  However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Conclusion

Dual Polarity Technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications redundancy is built-in to have a backup if the primary source fails. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap still needs to be replaced immediately.

And there you have it: dual-wire wrist straps together with dual-wire continuous monitors offer better protection than intermittent monitoring or testing if you have a critical application.

Check-out the SCS Wrist Strap Selection Guide and Workstation Monitor Selection Guide to find the correct products for your application.

Leave a Reply