March 9, 2018

You are browsing the site archives for March 9, 2018.

How to Neutralize a Charge on an Object that Cannot be Grounded

We have learned in a previous post that within an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential. We achieve this by using only ‘groundable’ materials.

But what do you do if an item in your EPA is essential to assembly and it cannot be grounded? Don’t sweat, not all hope is lost! Let us explain a couple of options which will allow you to use the non-groundable item in question.

Conductors and Insulators

In ESD Control, we differentiate items as conductors and insulators.

Materials that easily transfer electrons are called conductors. Examples of conductors are metals, carbon and the human body’s sweat layer.

Grounding cable snap with connection to a ground.
A charged conductor can transfer electrons which allows it to be grounded

Insulators are materials that do not easily transfer electrons are non-conductors by definition. Some well-known insulators are common plastics, polystyrene foam, and glass.

Plastic cup with charged electrons
Insulators like this plastic cup will hold the charge and cannot be grounded and “conduct” the charge away.

Both, conductors and insulators, may become charged with static electricity and discharge.

Electrostatic charges can effectively be removed from conductive or dissipative conductors by grounding them. A non-conductive insulator will hold the electron charge and cannot be grounded and “conduct” the charge away.

Conductors and Insulators in an EPA

The first two fundamental principles of ESD Control are:

  1. Ground all conductors (including people).
  2. Remove all insulators.

To ground all conductors per the first ESD Control principal, all surfaces, products and people are electrically bonded to ground. Bonding means linking or connecting, usually through a resistance of between 1 and 10 megohms.

Wrist straps and worksurface mats are some of the most common devices used to remove static charges:

  • Wrist straps drain charges from operators and a properly grounded mat will provide path-to-ground for exposed ESD susceptible devices.
  • Movable items (such as containers and tools) are bonded by standing on a bonded surface or being held by a bonded person.

If the static charge in question is on something that cannot be grounded, i.e. an insulator, then #2 of our ESD Control principles will kick in and insulators must be removed. Per the ESD Standard ANSI/ESD S20.20, “All nonessential insulators such as coffee cups, food wrappers and personal items shall be removed from the EPA.” [ANSI/ESD S20.20 clause 8.3.1 Insulators]

The ESD Standard differentiates between these two options:

  1. If the field measured on the insulator is greater than 2000 volts/inch, keep it at a minimum distance of 12 inches from the ESDs or
  2. If the field measured on the insulator is greater than 125 volts/inch, keep it at a minimum distance of 1 inch from the ESDs.
Moving an insulated keyboard away from ESD sensitive workspace
Aim to keep insulators away from ESDs

“Process-Essential” Insulators

Well, nothing in life is black and white. It would be easy if we were always able to follow the above ESD Control ‘rules’ but there are situations where said insulator is an item used at the workstation, e.g. hand tools. They are “process-essential” insulators – you cannot remove them from the EPA or the job won’t get done.

How do you ‘remove’ these vital insulators without actually ‘removing’ them from your EPA?

Here are four ways to reduce the ESD risk of these insulators:

  1. Keep all insulators a minimum of 1 inch or 12 inches from ESDs at all times per recommendation of the ESD Standard.
    This reduces the chance of insulators coming in contact with ESDs during workstation processes and assembly.
  2. Replace regular insulative items with an ESD protective version.
    There are numerous tools and accessories available that are ESD safe – from document handling to cups & dispensers, soldering tools, brushes and waste bins. They are either conductive or dissipative and replace the standard insulative varieties that are generally used at a workbench.
  3. Periodically apply Topical Antistat on non-ESD surfaces.
    After Topical Antistat has been applied and the surface dries, an antistatic and protective static dissipative coating is left behind. The static dissipative coating will allow charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts. It therefore gives non-ESD surfaces electrical properties until the hard coat is worn away.
  4. Neutralization with Ionization
    If these three options are not feasible for your application, the insulator is termed “process-essential” and therefore neutralization using an ionizer becomes a necessary part of your ESD control program. This allows for control of charged particles that can cause ESD events which we will cover next.

Neutralization

Most ESD workstations will have some insulators or isolated conductors that cannot be removed or replaced. These should be addressed with ionization.

Examples of some common process essential insulators are a PC board substrate, insulative test fixtures and product plastic housings.

Electronic enclosures are process-essential insulators (shown on ESD workstation)
Electronic enclosures are process-essential insulators

An example of isolated conductors are conductive traces or components loaded on a PC board that is not in contact with the ESD worksurface.

An ionizer creates great numbers of positively and negatively charged ions. Fans help the ions flow over the work area. Ionization can neutralize static charges on an insulator in a matter of seconds, thereby reducing their potential to cause ESD damage.

The charged ions created by an ionizer will:

  • neutralize charges on process required insulators,
  • neutralize charges on non- essential insulators,
  • neutralize isolated conductors and
  • minimize triboelectric charging.
SCS Benchtop ionizer on a workstation removing charges from isolated conductors on PCB Board
Insulators and isolated conductors are common in ESDs – Ionizers can help

For more information on ionizers and how to choose the right type of ionizer for your application, read this post.

Summary

The best way to keep electrostatic sensitive devices (ESDs) from damage is to ground all conductive objects and remove insulators. This is not always possible because some insulators are “process-essential” and are necessary to build or assemble the ESDs.

Insulators, by definition, are non-conductors and therefore cannot be grounded, but they can be controlled to minimize potential ESD damage.

Insulators can be controlled by doing the following within an EPA:

  • Keep insulators a minimum distance from ESDS at all times (1 or 12 inch minimum distance depending on field voltage measurements of the insulator per ESD Standard recommendation)
  • Replace regular insulative items with ESD protective versions
  • Periodically apply a coat of Topical Antistat
  • Neutralize charges for “process-essential” insulators with ionization

With these steps added to your ESD control process, all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential in an ESD Protected Area (EPA) to reduce the risk of ESD events and ESD damage.