April 2018

You are browsing the site archives for April 2018.

We already know that in an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same potential which is achieved by using ‘groundable’ materials that are then linked to ground. We have also learnt that the most common personnel grounding device to link people to ground are wrist straps. People who are moving around should instead wear ESD footwear.

So how do you know if your wrist straps and ESD footwear are working properly? Excellent question! And one we’ll answer in today’s post so let’s jump right in!

Purpose of Personnel Grounding Testers

Wrist straps and ESD footwear should be part of your Verification Plan. Each component in an EPA plays a vital part in the fight against electrostatic discharge (ESD). If just one component is not performing correctly, ESD sensitive devices can be damaged, potentially costing your company thousands of dollars.

Wrist straps and ESD footwear can fail and damage cannot always be detected by visual inspection. Just by looking at the items you would not know if they still provide sufficient protection. Personnel grounding testers should be used to provide feedback to verify the functionality of an operator’s wrist strap and/or footwear.

Your Personnel Grounding Checklist - Wear, Verify, Log, Handle
Your Personnel Grounding Checklist

Your Personnel Grounding Checklist:

  1. Wear your personnel grounding equipment such a wrist strap and/or footwear
  2. Verify your personnel grounding system using a wrist strap and/or footwear tester. Wrist straps and footwear, need to be tested at least daily before handling ESD sensitive devices and should be worn while checking.
  3. Log a record of each test. Records should be kept for quality control purposes.
  4. Handle ESD sensitive components ONLY if your wrist strap and/or footwear pass(es) the test.

Types of Personnel Grounding Testers

Personnel grounding testers can be purchased in two configurations:

  • Wrist strap tester
  • Wrist strap and footwear tester

As wrist straps are the most commonly used personnel grounding device to ground operators, you will find a lot of testers on the market that check wrist straps only. Combined wrist strap and footwear testers will verify your wrist straps AND footwear.

In addition to WHAT the testers verify, you will also be faced with a wide range of devices differing in HOW they test. Below you will see a (by no means complete) list of options:

  • Continuous and split footplate: You will find testers with a continuous footplate which require each foot to be tested separately one after the other. Dual-footplate or independent footwear testers feature a split footplate which allows the unit to verify both feet independently at the same time. This can be an efficient time-saver if you have a number of operators in your company who are required to check their personnel grounding devices.
  • Portable, wall-mountable and fitted testers: Portable battery-powered (predominantly) wrist strap testers are suitable for small labs or for supervisors to spot-check workers and ensure compliance. Wall-mountable units are generally supplied with a wall plate which attaches to a wall; the tester is then mounted on to the wall plate. Some personal grounding devices are accompanied by a stand (and built-in footplate) which allow for a more freely positioning of the unit within a room.
  • Relay terminal: A few testers on the market are fitted with a relay terminal (electrically operated switch) that can be integrated with electronic door locks, turnstiles, lights, buzzers, etc. This can be of advantage if companies only want to allow personnel in an EPA that have passed their wrist strap and/or footwear test.
  • Data acquisition: A growing number of personnel grounding devices allow for test activity data to be logged in a database. The units link to a computer which records operator identification, test results, resistance measurements, time and more. Paperless data can enhance operator accountability, immediately identifying problems while reducing manual logging and auditing costs.

Operation of Personnel Grounding Testers

Wrist strap testing:

If you are not using a continuous or a constant monitor, a wrist strap should be tested at least daily. This quick check can determine that no break in the path-to-ground has occurred. Wrist straps should be worn while they are tested. This provides the best way to test all three components:

  • the wrist band
  • the ground cord (including the resistor)
  • the interface (contact) with the operator’s skin
The SCS Combo Wrist Strap/ Footwear Tester
The SCS Combo Tester can be used to test wrist straps – more information

To ensure that the resistance to ground of personnel is within specification it is important to measure the entire system (i.e., wrist strap, person, and ground connection). The wrist strap system test method is described in ANIS/ESD S1.1. In general, the test method measures the resistance of the ground cord, wristband or cuff, and the interface of the band or cuff of the wearer.” [Handbook ESD TR20.20 Clause 8.2 Wrist Strap System]

The wrist strap system should be tested daily to ensure proper electrical resistance. Nominally, the upper resistance reading should be < 35 megohms or a user-defined resistance. Daily test records can provide evidence of conformity. Daily testing may be omitted if continuous monitors are used.” [ANSI/ESD S1.1 Clause A3. Frequency of System Testing]

If the wrist strap tester outputs a FAIL test result, stop working and test the wrist band and cord individually to find out which item is damaged. Replace the bad component and repeat the test. Obtain a PASS test result before beginning work. For more information on troubleshooting failed wrist straps, check this post.

Footwear testing:

If you are using a flooring / footwear system as an alternative for standing or mobile workers, ESD footwear should be tested independently at least daily while being worn. Proper testing of foot grounders involves the verification of:

  • the individual foot grounder
  • the contact strip
  • the interface between the contact strip and the operator’s perspiration layer

a) Place the foot grounders on the user’s shoes per the manufacturer’s instructions.
b) Place the left foot on the floor plate and touch the body contact area on the tester with one hand. Activate the tester per the manufacturer’s instructions.
c) Remove the left foot from the floor plate.
d) Repeat steps b and c with the right foot.
[ANSI/ESD SP9.2 Clause 6.2.2 Procedure (Integrated Tester)]

The SCS Dual Combination Tester is used to test wrist straps and footwear
The SCS Dual Combination Tester is used to test wrist straps and footwear – more information

If the footwear tester outputs a FAIL test result, stop working, and test the foot grounder and contact strip individually to find out which item is damaged. Replace the foot grounder. Obtain a PASS test result before beginning work.

Conclusion

Wrist straps and footwear need to be tested at least daily before handling any ESD sensitive devices. Personnel grounding devices need to be worn for verification using a wrist strap and/or footwear tester.

A record of each test has to be kept for quality control purposes.

Only handle ESD sensitive components if your wrist strap and/or footwear pass(es) the test.

 

When the tip of a soldering iron comes into direct electrical contact with the pins of a sensitive component, there is a danger of voltage and/or current signal transfer between:

  • the grounded iron tip and the grounded PC board,
  • the ungrounded iron tip and the grounded PC board,
  • the grounded iron tip and the ungrounded PC board.

This can cause Electrical Overstress (EOS) and Electrostatic Discharge (ESD).

What is Electrical Overstress (EOS) and why is it important to detect?

EOS is the exposure of a component or PCB board to a current and/or voltage outside its operational range. This absolute maximum rating (AMR) differs from one device to the next and needs to be provided by the manufacturer of each component used during the soldering process. EOS can cause damage, malfunction or accelerated aging in sensitive devices.

ESD can be generated if a component and a board have different potentials and the voltage transfers from one to the other. When such an event happens, the component goes through EOS. ESD can influence EOS, but EOS can also be influenced by other signals.

Many people are familiar with Electrostatic Discharge (ESD) which is caused by the spontaneous discharge between two materials that are at different levels of ElectroStatic potential. Once electrostatic potential between the two materials is balanced, the ESD event will stop.

An EOS event on the other hand is created by voltage and/or current spikes when operating equipment; it can therefore last “as long as the originating signal exists”. [Source] The potentially never-ending stimulus of EOS is what makes it such a big concern in the electronics industry. Even though the voltage levels are generally much lower compared to an ESD event, applying this smaller voltage combined with a larger peak current over a long period of time will cause significant damage.

The high temperatures during an EOS event (created by the high current) can lead to visible EOS damage.

For more information on EOS and the differences to ESD, check-out this post.

Sources of EOS during the Soldering Process

When soldering components, it’s the tip of the soldering iron that comes into contact with the potentially sensitive device. Therefore, many people assume the soldering tip is the cause of ESD/EOS. However, the soldering iron and its tip are just some of the components used at a workbench. Other components on the bench like tweezers, wiring, test equipment, etc. can also be sources of ESD/EOS as they come into contact with the component or board.

There are many sources of EOS during the soldering process, which can include:

  • Loss of Ground
    The tip of an ungrounded soldering iron can accumulate a voltage of up to ½ of the iron’s supply voltage. It can be caused within the soldering iron itself or in power outlets.
  • Noise on Ground
    If a noise signal exists on ground, the tip of the solder iron will carry noise, too. These high-frequency signals, or electromagnetic interference (EMI), are disturbances that affect an electrical circuit, due to either electromagnetic induction or electromagnetic radiation emitted from an external source.
  • Noise on Power Lines
    Noise not only generates via ground but in power lines, too. Transformers and power supplies that convert voltages to 24V are the main culprit. They regularly carry high-frequency spikes which end up on the tip of the soldering iron.
  • Power Tools
    Although not technically related to the soldering process itself, it’s worth mentioning that the tips of power tools (e.g. electric screwdrivers) may not be properly grounded during rotation. This can result in high voltage on the tip itself.
  • Missing/Inadequate ESD Protection
    ESD can be a cause of EOS damage. Therefore, it is essential to have proper ESD Protection in place. A voltage on the operator or the PCB board can otherwise lead to an ESD Event and expose the components on the PCB to EOS.

Detecting EOS during the Soldering Process

EOS/ESD events can be detected, measured, and monitored during the soldering process using a variety of diagnostic tools.

Diagnostic Tools

  • SCS CTM051 Ground Pro Meter
    The SCS CTM051 Ground Pro Meter is a comprehensive instrument that measures ground impedance, AC and DC voltage on the ground as well as the presence of high-frequency noise or electromagnetic interference (EMI) voltage on the ground. It will alert if the soldering iron tip has lost its ground or has EMI voltage induced into the tip from an internal source on the soldering iron or from an EMI noisy ground or power lines.

    CTM051
    The SCS CTM051 Ground Pro Meter
  • SCS CTM048 EM Eye – ESD Event Meter
    The SCS CTM048 EM Eye – ESD Event Meter paired with the SCS CTC028 EM Field Sensor is a diagnostic tool for the detection and analysis of ESD events and electromagnetic fields and can identify sources of harmful ESD Events and electromagnetic interference (EMI).

    CTM048-21
    The SCS CTM048 EM Eye – ESD Event Meter paired with the SCS CTC028 EM Field Sensor

EOS Continuous Monitors

  • SCS CTC331-WW Iron Man® Plus Workstation Monitor
    The SCS CTC331-WW Iron Man® Plus Workstation Monitor is a single workstation continuous monitor which continuously monitors the path-to-ground integrity of an operator and conductive/dissipative worksurface and meets ANSI/ESD S20.20.The Iron Man® Plus Workstation Monitor is an essential tool when it comes to EOS detection. The unit is capable of detecting EOS on boards and alarms if an overvoltage (±5V or less) from a tool such as a soldering iron or electric screwdriver is applied to a circuit board under assembly.

    CTC331-WW
    The SCS CTC331-WW Iron Man® Plus Workstation Monitor

Data Acquisition

  • SCS Static Management Program
    SCS Static Management Program (SMP) continuously monitors the ESD parameters throughout all stages of manufacturing. It captures data from SCS workstation monitors, ground integrity monitors for equipment, ESD event and static voltage continuous monitors and provides real-time data of manufacturing processes.The SCS 770063 EM Aware Monitor, which is part of SMP, can help during the soldering process by monitoring ESD events and change of static voltage that may result in EOS. The EM Aware alarms (visual and audibly) locally and sends data to the database of the SMP system if any of the ESD parameters are detected to be higher than user-defined limits.

    770063.jpg
    The SCS 770063 EM Aware Monitor

Eliminating EOS during the Soldering Process

Once the source of ESD/EOS is known, there are many things that can be done to prevent it in the first place: 

1. Managing Voltage on a PCB board

PCB boards contain isolated conductors and non-conductive (insulative) components. The only way to handle voltage on a PCB board is neutralizing potential static charges through ionization. An ionizer creates great numbers of positively and negatively charged ions. Fans help the generated ions flow over the work area to neutralize static charges (or voltage) on a PCB board in a matter of seconds.

For more information on ionization and how to choose the right type of ionizer for your application, please read these posts.

2. Managing Voltage on an Operator

Static voltage on an operator can be eliminated through proper grounding using a workstation monitor, e.g. WS Aware or Iron Man Plus Monitor, and proper grounding hardware. Sitting personnel are required to wear wrist straps. A wrist strap consists of a conductive wristband which provides an electrical connection to skin of an operator, and a coil cord, which is connected to a known ground point at a workbench, a tool or a continuous monitor. While a wrist strap does not prevent generation of voltages, its purpose is to dissipate these voltages to ground as quickly as possible.

Sitting personnel can also use continuous monitors – not only is the operator grounded through the continuous monitor, but they also provides a number of additional advantages:

  • Immediate feedback should a wrist strap fail
  • Monitoring of operators and work stations
  • Detection of split-second failures
  • Elimination of periodic testing

This post provides more details on continuous monitors.

Moving or standing personnel are grounded via a flooring/footwear system. ESD Footwear (e.g. foot grounders) are designed to reliably contact grounded ESD flooring and provide a continuous path-to-ground by removing electrostatic voltages from personnel.

3. Managing Current

One solution is the “re-routing of ground connection and separation of “noisy” ground from a clean one” as “connecting soldering iron and the workbench to the “quiet” ground often result in lower level of transient signals.“. [Source]

This will greatly reduce the high-frequency noise that could cause EOS damage.

If the noise on power lines and ground cannot be reduced manually, then the use of noise filters becomes necessary to reduce the risk of EOS exposure during the soldering process. Utilizing these filters suppresses the noise on power lines and will allow the solder iron to use “clean” power only.

In his papers, Vladimir Kraz, explains the set-up of a soldering station using a noise filter in more detail.

Noise-Filter
Soldering Iron with Power Line EMI Filter [Source]

Conclusion

During the soldering process, current and voltage spikes between the solder tip and PCB can cause ESD/EOS. Sources are varied and can include:

  • Loss of Ground
  • Noise on Ground
  • Noise on Power Lines
  • Power Tools
  • Missing/Inadequate ESD Protection

ESD/EOS can be identified and controlled using diagnostic tools. SCS offers a number of tools that can detect current, voltage and EMI – all potentially leading to ESD and EOS.

Once the source of ESD/EOS is known, the next step is eliminating the source:

  • Managing voltage on a PCB board using ionizers.
  • Managing voltage on an operator using workstation monitors or foot grounders.
  • Managing current using noise filters.
  • Managing voltage on materials at the work bench.
  • Managing ESD generation during specific processes.
  • Managing grounding.

 For more information regarding this topic, please see below for additional references.

References: