scsstaticcontrol

In a previous post we learnt how to select the correct ESD bag for your application, we want to focus on the next step: how to correctly use your ESD bag. We’ll use shielding bags as an example as they are the most commonly used ESD bags. However, the below can be applied to all types of ESD bags.

There are a few “dos and do-nots” you should keep in mind to ensure you get the most from your ESD bags. Nothing is worse than investing in all the right equipment and then using it incorrectly rendering all your efforts void. So, on that note, we have comprised a list of 5 tips for you on how to most efficiently use your shielding bags.

5 Tips On Efficient Use of Shielding Bags With ESD Sensitive Items:

1. Enclose Your ESD Sensitive Item with a Shielding Bag

Shielding bags should be large enough to enclose the entire product within. The shielding bag should be closed with a label or tape. Alternatively, you can use a zipper-style shielding bag. Following this advice ensures a continuous Faraday Cage is created which provides electrostatic shielding. This is the only way to ensure ESD sensitive devices placed inside the shielding bag are protected. If you are unfamiliar with the term “Faraday Cage”, scroll to the bottom of this page – we’ve included a more detailed explanation at the end of the post.

 

Enclose_Shielding_Bags
Enclose your ESD sensitive item

 

Please do not staple your shielding bag. The staple punctures the shielding layers and will provide a conductive path from the outside of the shielding bag to the inside. Charges outside the shielding bag could potentially charge or discharge to ESD sensitive components inside the shielding bag.

If you’re unsure as to what the correct size is for your application, catch-up on this post which will provide all the required information.

2. Remove Charges from Shielding Bags

When receiving an ESD sensitive device enclosed in a shielding bag, make sure you place the closed shielding bag on an ESD worksurface before removing the product. This will eliminate any charge that might have accumulated on the surface of the shielding bag.

 

Remove_Static_Charges.jpg
Remove charges

 

 3. Do Not Overuse Shielding Bags

Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

 

Dont_overuse_shielding_bags
Don’t overuse shielding bags


 4. Shielding Bags Are Not A Working Surface

Do not use a shielding bag as an ESD worksurface. Although a shielding bag is safe to use around ESD susceptible products, it is not intended to be a worksurface for product. When working on ESD sensitive devices, do so using ESD worksurfaces that are grounded correctly.

Shielding_Bags_are_no_ESD-Worksurface.jpg
Don’t use shielding bags as your ESD worksurface

 5. A Shielding Bag Is Not A “Potholder” Or “Glove”

Do not use a shielding bag as an “ESD potholder” or “ESD glove”. This type of use offers no ESD protection to the product.

If you need to handle ESD sensitive devices, make sure you are properly grounded using wrist straps or heel grounders.

Shielding_Bags_are_no-Gloves
Shielding bags are no “ESD glove” or “ESD potholder”

Some of you may have read through this post and have stumbled across the term “Faraday Cage” as you have not come across it before. We’ve also mentioned it before when talking about storing and transporting ESD sensitive items. However, we’ve never actually explained what a Faraday Cage is – so let’s rectify that!

What Is A “Faraday Cage” Or “Faraday Shield”?

A Faraday Cage or Faraday shield is an enclosure formed by conducting material or by a mesh of conductive material. Such an enclosure blocks external static and non-static electric fields. Faraday Cages are named after the English scientist Michael Faraday, who invented them in 1836.

What Is An Example of Faraday Cage Effect?

An impressive demonstration of the Faraday Cage effect is that of an aircraft being struck by lightning. This happens frequently but does not harm the plane or passengers. The metal body of the aircraft protects the interior. For the same reason, a car may be a safe place during a thunderstorm.

 

Lightning.jpg
Lightning striking an airplane

 

How Is A Faraday Cage Effect Used In ESD Protection?

In ESD Protection, the Faraday Cage effect causes charges to be conducted around the outside surface of the conductor. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’.

Examples of ESD control products that provide a Faraday Cage or shielding include Metal-In and Metal-Out Shielding bags.

When Is ESD Shielding Packaging Used?

ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.

ESD Packaging Standards For Outside An EPA

Per Packaging Standard ANSI/ESD S541 clause 6.2 Outside an EPA “Transportation of sensitive products outside of an EPA shall require packaging that provides:

  • Low charge generation.
  • Dissipative or conductive materials for intimate contact.
  • A structure that provides electrostatic discharge shielding.

Additional ESD Definitions

Other helpful ESD related definitions from the ESD Association Glossary ESD ADV1.0 include:

Faraday Cage“A conductive enclosure that attenuates a stationary electrostatic field.
Electrostatic discharge (ESD) shield: “A barrier or enclosure that limits the passage of current and attenuates an electromagnetic field resulting from an electrostatic discharge.
Electrostatic shield: “A barrier or enclosure that limits the penetration of an electrostatic field.

So, hopefully we’ve clarified a few things today when it comes to the “shielding” property by explaining the phenomenon of the “Faraday Cage”. Don’t forget to implement our tips when it comes to using your ESD bags!

 

We already know that in an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same potential which is achieved by using ‘groundable’ materials that are then linked to ground. We have also learnt that the most common personnel grounding device to link people to ground are wrist straps. People who are moving around should instead wear ESD footwear.

So how do you know if your wrist straps and ESD footwear are working properly? Excellent question! And one we’ll answer in today’s post so let’s jump right in!

Purpose of Personnel Grounding Testers

Wrist straps and ESD footwear should be part of your Verification Plan. Each component in an EPA plays a vital part in the fight against electrostatic discharge (ESD). If just one component is not performing correctly, ESD sensitive devices can be damaged, potentially costing your company thousands of dollars.

Wrist straps and ESD footwear can fail and damage cannot always be detected by visual inspection. Just by looking at the items you would not know if they still provide sufficient protection. Personnel grounding testers should be used to provide feedback to verify the functionality of an operator’s wrist strap and/or footwear.

Your Personnel Grounding Checklist - Wear, Verify, Log, Handle
Your Personnel Grounding Checklist

Your Personnel Grounding Checklist:

  1. Wear your personnel grounding equipment such a wrist strap and/or footwear
  2. Verify your personnel grounding system using a wrist strap and/or footwear tester. Wrist straps and footwear, need to be tested at least daily before handling ESD sensitive devices and should be worn while checking.
  3. Log a record of each test. Records should be kept for quality control purposes.
  4. Handle ESD sensitive components ONLY if your wrist strap and/or footwear pass(es) the test.

Types of Personnel Grounding Testers

Personnel grounding testers can be purchased in two configurations:

  • Wrist strap tester
  • Wrist strap and footwear tester

As wrist straps are the most commonly used personnel grounding device to ground operators, you will find a lot of testers on the market that check wrist straps only. Combined wrist strap and footwear testers will verify your wrist straps AND footwear.

In addition to WHAT the testers verify, you will also be faced with a wide range of devices differing in HOW they test. Below you will see a (by no means complete) list of options:

  • Continuous and split footplate: You will find testers with a continuous footplate which require each foot to be tested separately one after the other. Dual-footplate or independent footwear testers feature a split footplate which allows the unit to verify both feet independently at the same time. This can be an efficient time-saver if you have a number of operators in your company who are required to check their personnel grounding devices.
  • Portable, wall-mountable and fitted testers: Portable battery-powered (predominantly) wrist strap testers are suitable for small labs or for supervisors to spot-check workers and ensure compliance. Wall-mountable units are generally supplied with a wall plate which attaches to a wall; the tester is then mounted on to the wall plate. Some personal grounding devices are accompanied by a stand (and built-in footplate) which allow for a more freely positioning of the unit within a room.
  • Relay terminal: A few testers on the market are fitted with a relay terminal (electrically operated switch) that can be integrated with electronic door locks, turnstiles, lights, buzzers, etc. This can be of advantage if companies only want to allow personnel in an EPA that have passed their wrist strap and/or footwear test.
  • Data acquisition: A growing number of personnel grounding devices allow for test activity data to be logged in a database. The units link to a computer which records operator identification, test results, resistance measurements, time and more. Paperless data can enhance operator accountability, immediately identifying problems while reducing manual logging and auditing costs.

Operation of Personnel Grounding Testers

Wrist strap testing:

If you are not using a continuous or a constant monitor, a wrist strap should be tested at least daily. This quick check can determine that no break in the path-to-ground has occurred. Wrist straps should be worn while they are tested. This provides the best way to test all three components:

  • the wrist band
  • the ground cord (including the resistor)
  • the interface (contact) with the operator’s skin
The SCS Combo Wrist Strap/ Footwear Tester
The SCS Combo Tester can be used to test wrist straps – more information

To ensure that the resistance to ground of personnel is within specification it is important to measure the entire system (i.e., wrist strap, person, and ground connection). The wrist strap system test method is described in ANIS/ESD S1.1. In general, the test method measures the resistance of the ground cord, wristband or cuff, and the interface of the band or cuff of the wearer.” [Handbook ESD TR20.20 Clause 8.2 Wrist Strap System]

The wrist strap system should be tested daily to ensure proper electrical resistance. Nominally, the upper resistance reading should be < 35 megohms or a user-defined resistance. Daily test records can provide evidence of conformity. Daily testing may be omitted if continuous monitors are used.” [ANSI/ESD S1.1 Clause A3. Frequency of System Testing]

If the wrist strap tester outputs a FAIL test result, stop working and test the wrist band and cord individually to find out which item is damaged. Replace the bad component and repeat the test. Obtain a PASS test result before beginning work. For more information on troubleshooting failed wrist straps, check this post.

Footwear testing:

If you are using a flooring / footwear system as an alternative for standing or mobile workers, ESD footwear should be tested independently at least daily while being worn. Proper testing of foot grounders involves the verification of:

  • the individual foot grounder
  • the contact strip
  • the interface between the contact strip and the operator’s perspiration layer

a) Place the foot grounders on the user’s shoes per the manufacturer’s instructions.
b) Place the left foot on the floor plate and touch the body contact area on the tester with one hand. Activate the tester per the manufacturer’s instructions.
c) Remove the left foot from the floor plate.
d) Repeat steps b and c with the right foot.
[ANSI/ESD SP9.2 Clause 6.2.2 Procedure (Integrated Tester)]

The SCS Dual Combination Tester is used to test wrist straps and footwear
The SCS Dual Combination Tester is used to test wrist straps and footwear – more information

If the footwear tester outputs a FAIL test result, stop working, and test the foot grounder and contact strip individually to find out which item is damaged. Replace the foot grounder. Obtain a PASS test result before beginning work.

Conclusion

Wrist straps and footwear need to be tested at least daily before handling any ESD sensitive devices. Personnel grounding devices need to be worn for verification using a wrist strap and/or footwear tester.

A record of each test has to be kept for quality control purposes.

Only handle ESD sensitive components if your wrist strap and/or footwear pass(es) the test.

 

When the tip of a soldering iron comes into direct electrical contact with the pins of a sensitive component, there is a danger of voltage and/or current signal transfer between:

  • the grounded iron tip and the grounded PC board,
  • the ungrounded iron tip and the grounded PC board,
  • the grounded iron tip and the ungrounded PC board.

This can cause Electrical Overstress (EOS) and Electrostatic Discharge (ESD).

What is Electrical Overstress (EOS) and why is it important to detect?

EOS is the exposure of a component or PCB board to a current and/or voltage outside its operational range. This absolute maximum rating (AMR) differs from one device to the next and needs to be provided by the manufacturer of each component used during the soldering process. EOS can cause damage, malfunction or accelerated aging in sensitive devices.

ESD can be generated if a component and a board have different potentials and the voltage transfers from one to the other. When such an event happens, the component goes through EOS. ESD can influence EOS, but EOS can also be influenced by other signals.

Many people are familiar with Electrostatic Discharge (ESD) which is caused by the spontaneous discharge between two materials that are at different levels of ElectroStatic potential. Once electrostatic potential between the two materials is balanced, the ESD event will stop.

An EOS event on the other hand is created by voltage and/or current spikes when operating equipment; it can therefore last “as long as the originating signal exists”. [Source] The potentially never-ending stimulus of EOS is what makes it such a big concern in the electronics industry. Even though the voltage levels are generally much lower compared to an ESD event, applying this smaller voltage combined with a larger peak current over a long period of time will cause significant damage.

The high temperatures during an EOS event (created by the high current) can lead to visible EOS damage.

For more information on EOS and the differences to ESD, check-out this post.

Sources of EOS during the Soldering Process

When soldering components, it’s the tip of the soldering iron that comes into contact with the potentially sensitive device. Therefore, many people assume the soldering tip is the cause of ESD/EOS. However, the soldering iron and its tip are just some of the components used at a workbench. Other components on the bench like tweezers, wiring, test equipment, etc. can also be sources of ESD/EOS as they come into contact with the component or board.

There are many sources of EOS during the soldering process, which can include:

  • Loss of Ground
    The tip of an ungrounded soldering iron can accumulate a voltage of up to ½ of the iron’s supply voltage. It can be caused within the soldering iron itself or in power outlets.
  • Noise on Ground
    If a noise signal exists on ground, the tip of the solder iron will carry noise, too. These high-frequency signals, or electromagnetic interference (EMI), are disturbances that affect an electrical circuit, due to either electromagnetic induction or electromagnetic radiation emitted from an external source.
  • Noise on Power Lines
    Noise not only generates via ground but in power lines, too. Transformers and power supplies that convert voltages to 24V are the main culprit. They regularly carry high-frequency spikes which end up on the tip of the soldering iron.
  • Power Tools
    Although not technically related to the soldering process itself, it’s worth mentioning that the tips of power tools (e.g. electric screwdrivers) may not be properly grounded during rotation. This can result in high voltage on the tip itself.
  • Missing/Inadequate ESD Protection
    ESD can be a cause of EOS damage. Therefore, it is essential to have proper ESD Protection in place. A voltage on the operator or the PCB board can otherwise lead to an ESD Event and expose the components on the PCB to EOS.

Detecting EOS during the Soldering Process

EOS/ESD events can be detected, measured, and monitored during the soldering process using a variety of diagnostic tools.

Diagnostic Tools

  • SCS CTM051 Ground Pro Meter
    The SCS CTM051 Ground Pro Meter is a comprehensive instrument that measures ground impedance, AC and DC voltage on the ground as well as the presence of high-frequency noise or electromagnetic interference (EMI) voltage on the ground. It will alert if the soldering iron tip has lost its ground or has EMI voltage induced into the tip from an internal source on the soldering iron or from an EMI noisy ground or power lines.

    CTM051
    The SCS CTM051 Ground Pro Meter
  • SCS CTM048 EM Eye – ESD Event Meter
    The SCS CTM048 EM Eye – ESD Event Meter paired with the SCS CTC028 EM Field Sensor is a diagnostic tool for the detection and analysis of ESD events and electromagnetic fields and can identify sources of harmful ESD Events and electromagnetic interference (EMI).

    CTM048-21
    The SCS CTM048 EM Eye – ESD Event Meter paired with the SCS CTC028 EM Field Sensor

EOS Continuous Monitors

  • SCS CTC331-WW Iron Man® Plus Workstation Monitor
    The SCS CTC331-WW Iron Man® Plus Workstation Monitor is a single workstation continuous monitor which continuously monitors the path-to-ground integrity of an operator and conductive/dissipative worksurface and meets ANSI/ESD S20.20.The Iron Man® Plus Workstation Monitor is an essential tool when it comes to EOS detection. The unit is capable of detecting EOS on boards and alarms if an overvoltage (±5V or less) from a tool such as a soldering iron or electric screwdriver is applied to a circuit board under assembly.

    CTC331-WW
    The SCS CTC331-WW Iron Man® Plus Workstation Monitor

Data Acquisition

  • SCS Static Management Program
    SCS Static Management Program (SMP) continuously monitors the ESD parameters throughout all stages of manufacturing. It captures data from SCS workstation monitors, ground integrity monitors for equipment, ESD event and static voltage continuous monitors and provides real-time data of manufacturing processes.The SCS 770063 EM Aware Monitor, which is part of SMP, can help during the soldering process by monitoring ESD events and change of static voltage that may result in EOS. The EM Aware alarms (visual and audibly) locally and sends data to the database of the SMP system if any of the ESD parameters are detected to be higher than user-defined limits.

    770063.jpg
    The SCS 770063 EM Aware Monitor

Eliminating EOS during the Soldering Process

Once the source of ESD/EOS is known, there are many things that can be done to prevent it in the first place: 

1. Managing Voltage on a PCB board

PCB boards contain isolated conductors and non-conductive (insulative) components. The only way to handle voltage on a PCB board is neutralizing potential static charges through ionization. An ionizer creates great numbers of positively and negatively charged ions. Fans help the generated ions flow over the work area to neutralize static charges (or voltage) on a PCB board in a matter of seconds.

For more information on ionization and how to choose the right type of ionizer for your application, please read these posts.

2. Managing Voltage on an Operator

Static voltage on an operator can be eliminated through proper grounding using a workstation monitor, e.g. WS Aware or Iron Man Plus Monitor, and proper grounding hardware. Sitting personnel are required to wear wrist straps. A wrist strap consists of a conductive wristband which provides an electrical connection to skin of an operator, and a coil cord, which is connected to a known ground point at a workbench, a tool or a continuous monitor. While a wrist strap does not prevent generation of voltages, its purpose is to dissipate these voltages to ground as quickly as possible.

Sitting personnel can also use continuous monitors – not only is the operator grounded through the continuous monitor, but they also provides a number of additional advantages:

  • Immediate feedback should a wrist strap fail
  • Monitoring of operators and work stations
  • Detection of split-second failures
  • Elimination of periodic testing

This post provides more details on continuous monitors.

Moving or standing personnel are grounded via a flooring/footwear system. ESD Footwear (e.g. foot grounders) are designed to reliably contact grounded ESD flooring and provide a continuous path-to-ground by removing electrostatic voltages from personnel.

3. Managing Current

One solution is the “re-routing of ground connection and separation of “noisy” ground from a clean one” as “connecting soldering iron and the workbench to the “quiet” ground often result in lower level of transient signals.“. [Source]

This will greatly reduce the high-frequency noise that could cause EOS damage.

If the noise on power lines and ground cannot be reduced manually, then the use of noise filters becomes necessary to reduce the risk of EOS exposure during the soldering process. Utilizing these filters suppresses the noise on power lines and will allow the solder iron to use “clean” power only.

In his papers, Vladimir Kraz, explains the set-up of a soldering station using a noise filter in more detail.

Noise-Filter
Soldering Iron with Power Line EMI Filter [Source]

Conclusion

During the soldering process, current and voltage spikes between the solder tip and PCB can cause ESD/EOS. Sources are varied and can include:

  • Loss of Ground
  • Noise on Ground
  • Noise on Power Lines
  • Power Tools
  • Missing/Inadequate ESD Protection

ESD/EOS can be identified and controlled using diagnostic tools. SCS offers a number of tools that can detect current, voltage and EMI – all potentially leading to ESD and EOS.

Once the source of ESD/EOS is known, the next step is eliminating the source:

  • Managing voltage on a PCB board using ionizers.
  • Managing voltage on an operator using workstation monitors or foot grounders.
  • Managing current using noise filters.
  • Managing voltage on materials at the work bench.
  • Managing ESD generation during specific processes.
  • Managing grounding.

 For more information regarding this topic, please see below for additional references.

References:

We have learned in a previous post that within an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential. We achieve this by using only ‘groundable’ materials.

But what do you do if an item in your EPA is essential to assembly and it cannot be grounded? Don’t sweat, not all hope is lost! Let us explain a couple of options which will allow you to use the non-groundable item in question.

Conductors and Insulators

In ESD Control, we differentiate items as conductors and insulators.

Materials that easily transfer electrons are called conductors. Examples of conductors are metals, carbon and the human body’s sweat layer.

Grounding cable snap with connection to a ground.
A charged conductor can transfer electrons which allows it to be grounded

Insulators are materials that do not easily transfer electrons are non-conductors by definition. Some well-known insulators are common plastics, polystyrene foam, and glass.

Plastic cup with charged electrons
Insulators like this plastic cup will hold the charge and cannot be grounded and “conduct” the charge away.

Both, conductors and insulators, may become charged with static electricity and discharge.

Electrostatic charges can effectively be removed from conductive or dissipative conductors by grounding them. A non-conductive insulator will hold the electron charge and cannot be grounded and “conduct” the charge away.

Conductors and Insulators in an EPA

The first two fundamental principles of ESD Control are:

  1. Ground all conductors (including people).
  2. Remove all insulators.

To ground all conductors per the first ESD Control principal, all surfaces, products and people are electrically bonded to ground. Bonding means linking or connecting, usually through a resistance of between 1 and 10 megohms.

Wrist straps and worksurface mats are some of the most common devices used to remove static charges:

  • Wrist straps drain charges from operators and a properly grounded mat will provide path-to-ground for exposed ESD susceptible devices.
  • Movable items (such as containers and tools) are bonded by standing on a bonded surface or being held by a bonded person.

If the static charge in question is on something that cannot be grounded, i.e. an insulator, then #2 of our ESD Control principles will kick in and insulators must be removed. Per the ESD Standard ANSI/ESD S20.20, “All nonessential insulators such as coffee cups, food wrappers and personal items shall be removed from the EPA.” [ANSI/ESD S20.20 clause 8.3.1 Insulators]

The ESD Standard differentiates between these two options:

  1. If the field measured on the insulator is greater than 2000 volts/inch, keep it at a minimum distance of 12 inches from the ESDs or
  2. If the field measured on the insulator is greater than 125 volts/inch, keep it at a minimum distance of 1 inch from the ESDs.
Moving an insulated keyboard away from ESD sensitive workspace
Aim to keep insulators away from ESDs

“Process-Essential” Insulators

Well, nothing in life is black and white. It would be easy if we were always able to follow the above ESD Control ‘rules’ but there are situations where said insulator is an item used at the workstation, e.g. hand tools. They are “process-essential” insulators – you cannot remove them from the EPA or the job won’t get done.

How do you ‘remove’ these vital insulators without actually ‘removing’ them from your EPA?

Here are four ways to reduce the ESD risk of these insulators:

  1. Keep all insulators a minimum of 1 inch or 12 inches from ESDs at all times per recommendation of the ESD Standard.
    This reduces the chance of insulators coming in contact with ESDs during workstation processes and assembly.
  2. Replace regular insulative items with an ESD protective version.
    There are numerous tools and accessories available that are ESD safe – from document handling to cups & dispensers, soldering tools, brushes and waste bins. They are either conductive or dissipative and replace the standard insulative varieties that are generally used at a workbench.
  3. Periodically apply Topical Antistat on non-ESD surfaces.
    After Topical Antistat has been applied and the surface dries, an antistatic and protective static dissipative coating is left behind. The static dissipative coating will allow charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts. It therefore gives non-ESD surfaces electrical properties until the hard coat is worn away.
  4. Neutralization with Ionization
    If these three options are not feasible for your application, the insulator is termed “process-essential” and therefore neutralization using an ionizer becomes a necessary part of your ESD control program. This allows for control of charged particles that can cause ESD events which we will cover next.

Neutralization

Most ESD workstations will have some insulators or isolated conductors that cannot be removed or replaced. These should be addressed with ionization.

Examples of some common process essential insulators are a PC board substrate, insulative test fixtures and product plastic housings.

Electronic enclosures are process-essential insulators (shown on ESD workstation)
Electronic enclosures are process-essential insulators

An example of isolated conductors are conductive traces or components loaded on a PC board that is not in contact with the ESD worksurface.

An ionizer creates great numbers of positively and negatively charged ions. Fans help the ions flow over the work area. Ionization can neutralize static charges on an insulator in a matter of seconds, thereby reducing their potential to cause ESD damage.

The charged ions created by an ionizer will:

  • neutralize charges on process required insulators,
  • neutralize charges on non- essential insulators,
  • neutralize isolated conductors and
  • minimize triboelectric charging.
SCS Benchtop ionizer on a workstation removing charges from isolated conductors on PCB Board
Insulators and isolated conductors are common in ESDs – Ionizers can help

For more information on ionizers and how to choose the right type of ionizer for your application, read this post.

Summary

The best way to keep electrostatic sensitive devices (ESDs) from damage is to ground all conductive objects and remove insulators. This is not always possible because some insulators are “process-essential” and are necessary to build or assemble the ESDs.

Insulators, by definition, are non-conductors and therefore cannot be grounded, but they can be controlled to minimize potential ESD damage.

Insulators can be controlled by doing the following within an EPA:

  • Keep insulators a minimum distance from ESDS at all times (1 or 12 inch minimum distance depending on field voltage measurements of the insulator per ESD Standard recommendation)
  • Replace regular insulative items with ESD protective versions
  • Periodically apply a coat of Topical Antistat
  • Neutralize charges for “process-essential” insulators with ionization

With these steps added to your ESD control process, all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential in an ESD Protected Area (EPA) to reduce the risk of ESD events and ESD damage.

Do your employees handle ESD-sensitive high-end components that are expensive to replace if they failed? If so, reducing the possibility of ESD damage is an important part of an ESD control program. Today’s blog post will look at one option of protecting your critical applications: Dual-Wire Wrist Straps.

Introduction

In an ESD Protected Area (EPA), all surfaces, objects, people and ESD sensitive devices (ESDs) are kept at the same electric potential. This is achieved by using only ‘groundable’ materials that are then linked to ground.

This is in line with the requirements of ANSI/ESD S20.20: “The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
– Training
– Product Qualification
– Compliance Verification
– Grounding / Equipotential Bonding Systems
– Personnel Grounding
– ESD Protected Area (EPA) Requirements
– Packaging Systems
– Marking

[ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

Wrist Straps

Wrist straps are the most common personnel grounding device and are used to link people to ground. They are required if the operator is sitting.

A wrist strap is made up of two components:

  • A wrist band that is worn comfortably around your wrist and
  • A coiled cord that connects the band to a Common Grounding Point.

wristbandComponents of a Wrist Strap 

Dual-Wire Wrist Straps

Dual-Wire Wrist Straps have two conductors (compared to single-wire monitors which have only one conductor inside the insulation of the coiled cord). They offer a reduced risk of damaging ESD sensitive devices because if one conductor is severed or damaged, the operator still has a reliable path-to-ground with the second conductor. For that reason, they dual-wire wrist straps are generally used in critical applications.

Advantages of using Dual-Wire Wrist Straps:

  • Elimination of intermittent failures
  • Extension of wrist strap lifespan
  • Compatible with high performance continuous monitors

 2231
The MagSnap 360™ Dual-Wire Wrist Strap and Coil Cord –
more information

Dual-Wire Continuous Monitors

For maximum benefit, dual-wire wrist straps should be used together with dual-wire continuous monitors. Instead of connecting a coil cord directly to a common grounding point, the operator connects to a continuous monitor. The operator is grounded through the continuous monitor and the operator-to-ground connection is monitored.

The monitors provide operators with instant feedback on the status and functionality of their wrist strap and/or workstation. Continuous monitors detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components. The “intermittent” stage is characterized by sporadic failures as the cord is not completely severed. Once the cord is fully split, the “open” stage is reached.

WS-Aware-UseThe WS Aware Dual-Wire Workstation Monitor – more information


Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.” “Wrist strap checkers are usually placed in a central location for all to use.  Wrist straps are stressed and flexed to their limits at a workstation.  While a wrist strap is being checked, it is not stressed, as it would be under working conditions.  Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Resistance (or dual-wire) constant monitors are “… used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire.  If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC.  Pulsed DC signals were developed because of concerns about skin irritation.  However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Conclusion

Dual Polarity Technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications redundancy is built-in to have a backup if the primary source fails. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap still needs to be replaced immediately.

And there you have it: dual-wire wrist straps together with dual-wire continuous monitors offer better protection than intermittent monitoring or testing if you have a critical application.

Check-out the SCS Wrist Strap Selection Guide and Workstation Monitor Selection Guide to find the correct products for your application.

Imagine this scenario: you come to work in the morning and test your wrist strap per your ESD program’s recommended test frequency procedure. The wrist strap passes and you start work on your ESD sensitive devices. 3 hours later, when you come back from your tea break, you test your wrist strap again before continuing work and the wrist strap fails.

What to do? It is unknown when exactly the wrist strap failed in those 3 hours after your first periodic test in the morning and it is possible the devices you worked on during that time frame have been damaged. You don’t know which products have been damaged – latent defects are not visible and failures may only occur at a later time, reducing the potential reliability of the products.

Periodic testing is commonly used in an ESD program, however using continuous monitoring while working on those sensitive devices will alert the operator as soon as their wrist strap and/or workstation path-to-ground connection fails. Today’s blog post will highlight various benefits of continuous monitoring.

Introduction

Wrist straps are considered the first line of ESD Control. They are used to link people to ground ensuring operators are kept at the same potential as surfaces, objects and ESD sensitive devices (ESDs). Before handling sensitive items, wrist straps need to be visually inspected and checked (while worn) which will alert the operator to potential faults.
Per ESD Handbook TR 20.20 paragraph 5.3.2.4.4 Test Frequency, “Because wrist straps have a finite life, it is important to develop a test frequency that will guarantee integrity of the system. Typical test programs recommend that wrist straps that are used daily should be tested daily. However, if the products that are being produced are of such value that knowledge of a continuous, reliable ground is needed, then continuous monitoring should be considered or even required.

Continuous Monitoring

Continuous monitors come in different styles and sizes but are intended to be kept on the workstation. Some units just ‘sit’ on the bench; others are attached to the working surface matting; some can even be attached underneath the workbench so they don’t take away valuable workspace. Operators connect their wrist strap to the unit to allow for real-time continuous monitoring. If the wrist strap fails, the unit will alarm. Many continuous monitors also feature a parking snap providing a means for the operator to disconnect when leaving their workstation.

Types of Continuous Monitors

There are two different types of continuous monitors available:

  • Single-wire continuous monitors allow the use of any standard, single-wire wrist strap and coiled cord. The monitor / wrist strap system life-cycle costs are significantly lower compared to dual-wire systems. While they would not be suitable for the most critical applications, single-wire continuous monitors are an economical way to monitor both the operator’s wrist strap and/or workstation surface.
  • Dual-wire continuous monitors provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire continuous monitors provide redundancy because even if one dual-wire wrist strap conductor is severed, the operator still has a reliable path-to-ground with the other conductor. Dual-wire technology requires the use of dual-wire wrist straps and coiled cords.

Benefits of Continuous Monitors

 1. Instant Feedback

Continuous monitors provide operators with instant feedback on the status and functionality of their wrist strap. The instant an operator’s wrist strap or cord fails, the monitor will issue audible and visual (LEDs) alarms alerting the user and supervisor of the problem. The faulty wrist strap can be replaced with a new one from stock.

The SCS 724 Workstation Monitor in Use
The SCS 724 Workstation Monitor in Use

2. Monitoring of Operator AND Workstation

When the monitor is connected to an ESD working surface, the amount of current that flows is a function of the total resistance between the monitor and through the working surface to ground. When the resistance of the working surface is below a pre-set threshold*, the monitor will indicate good. Conversely, if the resistance level is high when compared to the monitor’s reference*, the unit will alarm. This is an integrating resistance measuring circuit, therefore it is relatively insensitive to externally induced electromagnetic fields.

*The resistance threshold limits can vary between brands and models (and can sometimes also be adjusted by the user) so make sure you do your homework before committing to a particular unit and check the limit meets your individual requirements.

724 Monitor Installation
Installing the SCS 724 Workstation Monitor to ground the worksurface

Some continuous monitors can monitor worksurface ground connections. A test signal is passed through the worksurface and ground connections. Discontinuity or over limit resistance changes cause the monitor to alarm.
Worksurface monitors test the electrical connection between the monitor, the worksurface, and the ground point. However, the monitor will not detect insulative contamination on the worksurface and test methods such as those outlined in ESD TR53 can be used to isolate this problem. ” [ESD TR20.20 Continuous Monitors Clause 18.4.2 Worksurface Ground Monitoring].

3. Detection of Initial Flex Fatigue

Unlike wrist strap testers, continuous monitors detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components.

Using the SCS Iron Man® Plus Monitor in conjunction with Dual-Wire Smocks
Using the SCS Iron Man® Plus Monitor in conjunction with Dual-Wire Smocks

During operation, wrist straps might be stressed and flexed to their limits at a workstation. While a wrist strap is being checked it is typically not stressed, as it would be under working conditions. Openings in the wire at the coiled cord’s strain relief are sometimes only detected under stress. Even if the wrist strap is working properly, a bad or intermittent ground connection will render the wrist strap system less than 100% effective.” [ESD TR20.20 Continuous Monitors Clause 18.2 Wrist Strap Checkers]

4. Elimination of Periodic Testing

Many customers are eliminating periodic touch testing of wrist straps and are utilizing continuous monitoring to better ensure that their products were manufactured in an ESD protected environment. Continuous monitors also eliminate the need for users to test wrist straps and log the results.

PaperPile
No more paper logs!

When using continuous monitoring, operators:

  • Don’t have to waste time queuing at a wrist strap test station before each shift.
  • Don’t have to remember to complete their daily test logs.

Conclusion

If your company manufactures products containing ESD sensitive items, you need to ask yourself “how important is the reliability of our products”? Sooner or later a wrist strap is going to fail. If your products are of such high value that you need to be 100% sure your operators are grounded at all times, then you should consider a continuous monitoring system.

Advantages of Continuous Monitors are plentiful:

  • Immediate feedback should a wrist strap fail
  • Monitoring of operators and work stations
  • Detection of split-second failures
  • Elimination of periodic testing

All of the above advantages of Continuous Monitors will lead to a reduction in overall costs.

Savings comes from:

  1. Eliminating time/labor required in verifying a wrist strap before handling ESDs
  2. Reducing damage to ESDs from broken wrist straps that may go unnoticed with standard wrist strap testers.

For more information and an overview of SCS Workstation Monitors, have a look at our Selection Guide.

There is a very common misconception that if a person is wearing a wrist strap, an ESD garment (ESD smock, ESD shirt, ESD coat etc.) is unnecessary. Operators falsely believe that any charge on a person and their clothes will find its way to ground via the wrist strap.
Today’s blog post will explain the importance of ESD smocks and why they should be considered for your ESD Protected Area (EPA).

Purpose of ESD smocks
The main reason people wear ESD smocks is to shield their insulative clothing and minimize the electric fields generated from their clothing. As we learned previously, all process essential insulators should be kept at a minimum distance of 12 inches from ESD susceptible items. Clothing fabric, particularly when made from synthetic fibres, is a significant charge generator. Non-ESD clothing fabric is an isolated charged insulator which cannot be grounded and the resulting charges can threaten ESD control.
An insulator (like clothing) will not let charges flow and holds the charge until either neutralized naturally over time (hours or days) or with an air ionizer (artificially under a few seconds). Until the charges are neutralized, your clothing may have several thousand volts that could suddenly discharge and damage nearby static-sensitive items.
The ESD Standard does not require ESD smocks, however they are a very practical solution for minimizing ESD events from a person’s clothing. ESD smocks can be an important step to demonstrating commitment to an ESD control program.

Example of an ESD Smock
Example of an ESD Smock

Garments are intended to attenuate electrostatic fields that may be present on personnel clothing. The need for ESD protective garments is generally determined based on the sensitivity of the ESD items being handled where ESD control is a requirement.
While a person may be grounded using a wrist strap or other grounding methods, that does not mean that insulative clothing fabrics can dissipate a charge to that person’s skin and then to ground. Personnel clothing usually is electrically separate or isolated from the body.” [ESD TR20.20 Clause 5.3.13 Garments]

ESD smock properties
Most smocks are constructed of a dissipative material which incorporates texturized polyester and carbon nylon fibres. The conductive nylon fibres are woven in a chain-link design throughout the material, providing continuous and consistent charge dissipation.

ESD Smocks are an ESD protective product that should possess the following ESD control characteristics:

  • Antistatic low-charging so they minimize the generation of electrostatic charges;
  • Dissipative so when grounded they will remove charges to ground;
  • Shielding creating a “Faraday Cage” effect so they will restrict charges generated on the user’s clothing to the inside of the ESD Smock and
  • Groundable so the user can easily and reliably connect them to ground.

The majority of ESD smocks on the market are single-wire ESD smocks meaning they provide one electrical connection to ground.
The all-new SCS Dual-Wire Static Control Smocks are designed for use with dual-wire grounding systems. The smock’s dual-wire circuit loop closes when its two conductive cuffs are bridged by the skin on the wearer’s wrists.

  • One conductive cuff is electrically bonded to the dissipative garment and one snap stud at the hip.
  • The second conductive cuff uses an isolated conductive path to bond to a second snap stud at the hip.

When used in conjunction with a dual-wire continuous monitor, SCS Dual-Wire Static Control Smocks provide assurance of a proper dissipative path from operator to ground at all times.
For more information on the differences of single-wire and dual-wire systems, please review this post.

Installation and grounding of ESD smocks
Follow the directions below for proper installation and grounding of the ESD smock.

  • Put on the smock, and close the garment by fastening all of the snaps on the front. Verify that no clothing is exposed outside of the smock.
    Installation of Smocks - Part 1
  • Fit the conductive knitted cuffs over the wrists. Ensure that the cuffs make contact with the skin. They should never be worn over the shirt sleeves.
    Installation of Smocks - Part 2
  • Ground the ESD smock. A popular way to ground an ESD smock is with a coiled cord either attached to a snap on the waist area of the smock or via a wrist strap snapped to the inside cuff of an ESD smock. If none of these methods are suitable, the smock should be grounded via the person’s wrist removing charges via ESD footwear to ESD protected flooring.
    Installation of Smocks - Part 3

 

Using Hip-to-Cuff Grounding with the SCS Dual-Wire Static Control Smock and SCS Iron Man® Plus Workstation Monitor
Using Hip-to-Cuff Grounding with the SCS Dual-Wire Static Control Smock and SCS Iron Man® Plus Workstation Monitor

After verifying that the garment has electrical conductivity through all panels, the garment should be electrically bonded to the grounding system of the wearer so as not to act as a floating conductor. This can be accomplished by several means:

  1. Ground the garment to the body through a wrist strap-direct connection with an adapter
  2. Ground the garment through a conductive wrist cuff in direct contact with the skin of a grounded operator
  3. Ground the garment through a typical separate ground cord, directly attached to an identified groundable point on the garment
  4. Garments should be worn with the front properly snapped or buttoned to avoid exposure of possible charges on personal clothing worn under the garment.

[ESD TR20.20 Clause 5.3.13.2.6 Proper Use]

ESD Garments are a conductor and therefore should be grounded. If not grounded, the ESD smock can be a potentially threatening isolated charged conductor. If an operator is wearing a smock but is not electrically connecting the smock to either their body’s skin or ground, then charges on the smock may have nowhere to go or discharge to.

Testing of ESD smocks
Panel-to-panel conductivity is essential to ensure portions of the smock are not left as isolated charged conductors. A Resistance Test Kit can quickly measure resistance of the fabric and ensure panel-to-panel conductivity by placing five pound electrodes on different fabric panels.
To ensure that the fabric is low tribocharging, a Static Field Meter can be used to measure charges generated by causing contact and separation with other materials. In addition, the Static Field Meter can demonstrate shielding by measuring a charged object and then covering the charged item with the ESD smock. Being shielded, the measured charge should be greatly reduced.

Static control garments that electrically bond to the test subject and provide a path to ground for the test subject (Category 3) shall be evaluated by all three methods:

  • the resistance point-to-point test method (Fig Sa, 5b and 5c);
  • the resistance point to groundable point test method (Figures 4, 6a, 6b and 7); and
  • the system test to determine the resistance from the person, through the garment

groundable point of the garment to the groundable point, including the ground cord (Figures 8a and 8b).” [ANSI/ESD STM2.1 Clause 1.3.2]

Using the SCS 701 Analog Surface Resistance Megohmmeter to test panel-to-panel conductivity
Using the SCS 701 Analog Surface Resistance Megohmmeter to test panel-to-panel conductivity

Cleaning of ESD smocks
Smocks must be laundered periodically for proper operation. The proper method to clean a smock is to:

  • Wash the garment by hand or with a standard household washing machine in cold or warm water.
  • Only use non-ionic liquid softeners and detergents when laundering. Do not bleach your ESD smocks!
  • Tumble dry with low heat or hang dry.

Do not use:

  • Hot water
  • Dry detergent
  • Bleach
  • Fabric softener
  • Industrial laundry machines

Please also note that smocks should not be altered in any way. The smocks effectiveness is in fully covering the human body and street clothes – especially at the wrists and front of the body. Altering the smock in any way will nullify its effectiveness.
The typical useful and effective life of an ESD smock under normal wearing and recommended washing conditions is a minimum of 75 washings. Under the same conditions, SCS smocks will maintain their usefulness and effectiveness for a minimum of 100 washings

Wrist straps are generally straight forward with what they do and how they work, but when it comes to foot grounders there is still a lot of confusion out there – something we want to address in today’s post. So, let’s get started.

Introduction
An Electrostatic Discharge (ESD) flooring / footwear system is an alternative for grounding standing or mobile workers. Sitting personnel are usually grounded via a wrist strap, but this method is not feasible for operators moving around in an ESD Protected Area (EPA).
ESD foot grounders are designed to reliably contact grounded ESD flooring and provide a continuous path-to-ground by removing electrostatic charges from personnel. ESD foot grounders are easy to install and can be used on standard shoes by placing the grounding tab in the shoe under the foot.
Per ANSI/ESD S20.20 Clause 8.2 Personnel Grounding: “For standing operations, personnel shall be grounded via a wrist strap or by a footwear/flooring system meeting the requirements of”:

  • the total resistance of the Footwear / Flooring system shall be less than 1.0 × 109 ohms
  • the maximum body voltage generation shall be less than 100 V.

Structure of Foot Grounders
Foot grounders discharge static from a person to ground by connecting the person to a grounded walking surface. A conductive ribbon placed inside the wearer’s shoe or sock makes electrical contact with the skin through perspiration. The ribbon is joined to a resistor which limits electrical current should accidental exposure to electricity occur. The other end of the resistor is joined to a conductive sole. The sole contacts a grounded ESD floor mat or ESD flooring system.

Structure of a Foot Grounder
Structure of a Foot Grounder

Foot grounders must be worn on both feet to maintain the integrity of the body-to-ground connection.
Wearing a foot grounder on each foot ensures contact with ground via the ESD floor even when one foot is lifted off the floor. This will more reliably remove static charges generated by human movement and more reliably protect ESD sensitive devices (ESDS).

Installation of Foot Grounders
1. Standard Style Foot Grounders
Standard D-ring heel grounders are equipped with an elastic D-ring fastening system which provides adjustable cinching of an ankle strap and allows “flex” during walking. They are designed for use on most types of shoes and boots.

  • Place the grounding tab in the shoe so that it will lay under the heel. Once heel is repositioned inside tied shoe, tuck excess ribbon material into side of shoe.
  • Place heel cup onto the shoe. For models with a non-marking interior, install so that the lined cup surface is making contact with the shoe.
  • Pull the strap through the D-ring and cinch down for snug, comfortable fit.
  • Test each heel grounder to confirm proper installation.
Installation of Standard Style Foot Grounders – more information
Installation of Standard Style Foot Grounders – more information

2. Cup Style Foot Grounders
Cup Style Foot Grounders are heel grounders designed for use on standard shoes and can be easily adjusted to fit the individual wearer.

  • Place the foot grounder on the shoe so that the lining is contacting the shoe.
  • Insert the grounding tab inside of the shoe and under the foot. Make sure that solid contact is made between the sock and body. Cut contact strip to desired length.
  • Fasten hook and loop straps together, securing the foot grounder firmly on shoe.
  • Test each foot grounder to confirm proper installation.
Installation of Cup Style Foot Grounders – more information
Installation of Cup Style Foot Grounders – more information

3. D-Ring Toe Grounders
Toe Grounders with the elastic D-ring fastening system are designed for use with a variety of men’s and women’s shoes including high heels, cowboy boots, flat shoes, loafers and safety shoes.

  • Insert the grounding tab inside of the shoe and under the foot. Make sure that solid contact is made between the sock and body. Cut grounding tab to desired length.
  • Place rubber toe material under toe area of shoe sole. Pull hook-and-loop strap over top of shoe and cinch down until snug. Install so that the lined surface is contacting the shoe.
  • Pull elastic strap around the back of the heel. Adjust D-ring plastic loop for a comfortable fit.
  • Test each toe grounder to confirm proper installation
Installation of D-Ring Toe Grounders – more information
Installation of D-Ring Toe Grounders – more information

4. Disposable Foot Grounders
Disposable Foot Grounders are designed for applications where the use of permanent foot grounders are not economical or practical. They are constructed so that it may be used once and then discarded.

  • Remove shoe. Wipe any excess dirt from underside of heel. Remove release paper from heel grounder.
  • Apply the adhesive end of the heel grounder to the underside of heel of the shoe. Wrap the tape snugly around the outside of the shoe.
  • Insert the non-adhesive end of the heel grounder inside the shoe so that the black dot is over the middle of the heel area facing upwards.
  • Put the shoe on.
  • Test each foot grounder to confirm proper installation.

NOTE: This product is not recommended for use on equipment with operating voltage.

Installation of Disposable Foot Grounders – more information
Installation of Disposable Foot Grounders – more information

Advantages of ESD Foot Grounders
ESD foot grounders are often preferred over ESD shoes for several reasons:

  • One size fits many foot sizes, reducing stock holdings and simplifying operations.
  • ESD foot grounders usually pass the mandatory resistance test as soon as worn, whereas some ESD shoes require a ‘warm-up period’ in order for the operator’s Resistance to Ground (RG) to drop below 35 megohms.
  • The operator is allowed to wear their own footwear, increasing their comfort in the workplace and not limiting footwear selection to available ESD shoe styles.
  • Less initial investment cost in comparison to ESD shoes if outfitting all operators in an EPA.

Disadvantages of ESD Foot Grounders
ESD foot grounders have a useful life that is dependent on the floor and it’s surface roughness, which can make them seem like they have shorter useful life in comparison to ESD shoes. However, there are a few simple tricks to avoid a quick ‘burn-out’:

  • We recommend ESD foot grounders only to be used indoors where floors are usually smoother (and where the ESD foot grounder is less likely to become wet, thereby short circuiting the resistor). The rougher the floor the greater the wear.
  • The manner in which the wearer walks can also affect the life span of the grounder.

In summary, with reasonable care and if used only indoors, ESD heel and toe grounders can last several weeks.

Testing of Foot Grounders
Proper testing of your foot grounders involve testing:

  • the individual foot grounder
  • the contact strip
  • the interface between the contact strip
  • the wearer’s perspiration layer

There are personnel grounding testers on the market designed to properly test foot grounders. For more information, check out our selection chart.
If you obtain a fail reading from the tester you should stop working and test the foot ground and contact strip individually to find out which item has failed. Replace the foot grounder or replace the bad component if possible. Retest the system before beginning work.

Ensure your Foot Grounders are working before handling ESDs
Ensure your Foot Grounders are working before handling ESDs

Cleaning of Foot Grounders
Foot grounders are used to ground static charges, however dirt provides an insulative layer adversely effecting reliability. For proper operation, the foot grounder and its conductive strip must be kept clean.
The rubber portion of the foot grounder should be cleaned using an ESD cleaner. Ensure that your ESD cleaner is silicone free. This is critical as silicone is an insulator. An alternative would be to clean using isopropyl alcohol. ESD cleaners should not be used to clean the nylon polyester grounding tab. Foot Grounders can be safely hand or machine washed on gentle cycle. Mild detergents, such as Woolite® or a liquid dish washing product used with warm water are recommended for cleaning, however care must be taken to ensure that these detergents are silicone free.

Conclusion

  1. It is recommended that ESD foot grounders are worn on both feet to ensure that a continuous path to ground is maintained at all times (even when lifting one foot).
  2. Contact strips should be tucked inside the shoe with as much contact area as possible to the bottom of the stockinged foot. ESD foot grounders rely upon the perspiration layer inside of the shoe to make contact through the stocking.
  3. Foot grounders must be used with an ESD protected floor system (such as properly grounded ESD floor finish, carpet tiles or floor mats) to provide a continuous electrical path from the user directly to the ESD ground.
  4. A current limiting of one or two megohm resistor in series with the contact strip is recommended but not required.
  5. ESD foot grounders should be tested independently at least daily while being worn to periodically test for proper grounding.

SCS-NC1-holiday2017From all of us here at SCS, we would like to wish you a safe and Happy Holiday season!

We will be closed on Monday, December 25, 2017 and Monday, January 1, 2018.

As always, thank you for your business and the opportunity to provide you with a Static Control Solution.