Compliance Verification Plan


Electronic devices and systems can be damaged by exposure to high electric fields as well as by direct electrostatic discharges. A good circuit layout and on-board protection may reduce the risk of damage by such events, but the only safe action at present is to ensure that devices are not exposed to levels of static electricity above the critical threshold.

This can only be achieved by introducing a static control program which usually involves setting up an ESD Protected Area (EPA) in which personnel are correctly grounded and all meet the ESD Standard. However, setting up an EPA does not of itself guarantee a low static environment. Production procedures may change, new materials may be introduced, the performance of older materials may degrade and so on.

Measuring Effectiveness of an ESD Control Program

To ensure the effectiveness of any static control program it is important that regular measurements are carried out:

  1. to determine the sensitivity to ESD of devices being produced or handled.
  2. to confirm that static levels are lower than the critical level, and that new or modified work practices have not introduced high static levels.
  3. to ensure that both new and existing materials in the EPA meet the necessary requirements.

Only after an ‘operational baseline’ has been established by regular auditing will it become possible to identify the origin of unexpected problems arising from the presence of static.

1. Determining the sensitivity of ESD sensitive Devices

It is important to understand the sensitivity of ESD sensitive devices before an action plan can be created. Once you know the sensitivity of the items you are handling, can you work towards ensuring you’re not exceeding those levels.

Part of every ESD control plan is to identify items in your company that are sensitive to ESD. At the same time, you need to recognize the level of their sensitivity. As explained by the ESD Association, how susceptible to ESD a product is depends on the item’s ability to either:

  • dissipate the discharge energy or
  • withstand the levels of current.

2. Measurements to prove the effectiveness of an ESD Control Program

Measuring electrostatic quantities poses special problems because electrostatic systems are generally characterized by high resistances and small amounts of electrical charge. Consequently, conventional electronic instrumentation cannot normally be used.

Measuring Electrical Field

Wherever electrostatic charges accumulate, they can be detected by the presence of an associated electric field. The magnitude of this field is determined by many factors, e. g. the magnitude and distribution of the charge, the geometry and location of grounded surfaces and the medium in which the charge is located.

The current general view of experts is that the main source of ESD risk may occur where ESDS can reach high induced voltage due to external fields from the clothing, and subsequently experience a field induced CDM type discharge.” [CLC TR 61340-5-2 User guide Garments clause Introductory remarks]

Using the 718 Static Sensor to test static fields

A static field meter is often used for ESD testing of static fields. It indicates surface voltage and polarity on objects and is therefore an effective problem-solving tool used to identify items that are able to be charged.

A field meter can be used to:

  • verify that automated processes (like auto insertion, tape and reel, etc.) are not generating charges above acceptable limits.
  • measure charges generated by causing contact and separation with other materials.
  • demonstrate shielding by measuring a charged object and then covering the charged item with an ESD lab coat or shielding bag. Being shielded the measured charge should be greatly reduced.


Measuring ESD Events

ESD events can damage ESD sensitive items and can cause tool lock-ups, erratic behavior and parametric errors. An ESD Event Detector like the EM Eye ESD Event Meter will help detect most ESD events. It detects the magnitude of events and using filters built into the unit, it can provide approximate values for some ESD events for models (CDM, MM, HBM) using proprietary algorithms.

Using the EM Eye ESD Event Meter to detect ESD Events

Solving ESD problems requires data. A tool counting ESD events will help carry out a before-and-after analysis and will prove the effectiveness of implementing ESD control measures.


3. Checking Materials in your EPA

When talking about material properties, the measurement you will most frequently come across is “Surface Resistance”. It expresses the ability of a material to conduct electricity and is related to current and voltage. The surface resistance of a material is the ratio of the voltage and current that’s flowing between two pre-defined electrodes.
It is important to remember that the surface resistance of a material is dependent on the electrodes used (shape as well as distance). If your company implements an ESD control program compliant to the ESD Standard ANSI/ESD S20.20, it is therefore vital to carry out surface resistance measurements as described in the Standard itself. For more information on the definition of resistance measurements used in ESD control, check out this post.

A company’s compliance verification plan should include periodic checks of surfaces measuring:

  • Resistance Point-to-Point (Rp-p) and
  • Resistance-to-ground (Rg).
Measuring Surface Resistance of worksurface matting using the
SRMETER2 Surface Resistance Meter

Surface resistance testers can be used to perform these tests in accordance with ANSI/ESD S20.20 and its test method ANSI/ESD S4.1; if these measurements are within acceptable ranges, the surface and its connections are good. For more information on checking your ESD control products, catch-up with this. It goes into depth as to what products you should be checking in your EPA and how they should be checked.



Measurements form an integral part of any ESD control program. Measuring devices help identify the sensitivity of ESD devices that ESD programs are based on, and also are used to verify the effectiveness of ESD control programs set in place. High quality instruments are available commercially for measuring all the parameters necessary for quantifying the extent of a static problem.

We hope the list above has introduced the techniques most commonly used. For more information on how to get your ESD control program off the ground, Request a free ESD/EOS Assessment at your facility by one of our knowledgeable local representatives to evaluate your ESD program and answer any ESD questions!



Many companies implement an ElectroStatic Discharge (ESD) Control Program with the aim of improving their operations. Effective ESD control can be a key to improving:

  • Productivity
  • Quality
  • Customer Satisfaction

Problems arise when an organization invests in ESD protective products and/or equipment and then misuses them. Misuse of ESD protective products and/or equipment wastes invested money and can also be causing more harm than good. Today’s blog post will highlight some of the major issues we have come across and how you can avoid or fix them.

About ESD Control and ESD Protection

Remember that for a successful ESD control program, ESD protection is required throughout the manufacturing process: from goods-in to assembly all the way through to inspection. Anybody who handles electrical or electronic parts, assemblies or equipment that are susceptible to damage by electrostatic discharges should take necessary precautions.

Just like viruses or bacteria that can infect the human body, ESD can be a hidden threat unable to be detected by human eyes. Hidden viral/bacterial threats in hospitals are controlled by extensive contamination control procedures and protective measures such as sterilization. The same principles apply to ESD control: you should never handle, assemble or repair electronic assemblies without taking adequate protective measures against ESD.

Common Mistakes in ESD Control

1. Ionizers are poorly maintained or out-of-balance

If an ionizer is out of balance, instead of neutralizing charges, it will produce primarily positive or negative ions. This results in placing an electrostatic charge on items that are not grounded, potentially discharging and causing ESD damage to nearby sensitive items.

Step3 Remember to clean emitter pins and filters using appropriate tools. Create a regular maintenance schedule which will extend the lifespan of your ionizers tremendously.

Consider using ionizers with “Clean Me” and//or “Balance” alarms. These will alert you when maintenance is required.

Step2.png All ionization devices will require periodic maintenance for proper operation. Maintenance intervals for ionizers vary widely depending on the type of ionization equipment and use environment. Critical clean room use will generally require more frequent attention. It is important to set up a routine schedule for ionizer service.”

[ESD TR20.20 Handbook Ionization clause 15.8 Maintenance / Cleaning]

If you would like to learn more about how ionizers work and what type of ionizer will work best for your application, check out this post for detailed coverage.

2. ESD Garments are Ungrounded

We’ve seen it so many times: operators wearing an ESD coat (without appropriate wrist straps and/or footwear/flooring) thinking they are properly grounded. However, without proper electrical bonds to a grounding system they are not grounded!

Step3 Every ESD garment needs to be electrically bonded to the grounding system of the wearer. Otherwise it just acts as a floating conductor. There are a few options to choose from:

  • Wrist Straps
  • ESD footwear/flooring
  • Hip-to-Cuff grounding
Step2 After verifying that the garment has electrical conductivity through all panels, the garment should be electrically bonded to the grounding system of the wearer so as not to act as a floating conductor.

This can be accomplished by several means:

  1. Ground the garment to the body through a wrist strap-direct connection with an adapter.
  2. Ground the garment through conductive wrist or heel cuffs in direct contact with the skin of a grounded operator.
  3. Ground the garment through a typical separate ground cord, directly attached to an identified groundable point on the garment.
  4. Garments should be worn with the front properly snapped or buttoned to avoid exposure of possible charge on personal clothing worn under the garment.

[ESD TR20.20 Handbook Garments clause 19.4 Proper Use]

ESD clothing loses their ESD properties over time. It is therefore an important part of the ESD Control Program to incorporate periodic checks (see #3 below) of ESD garments.

If you need more information on ESD garments, we recommend having a look at this post.

3. No Compliance Verification Plan / Not Checking ESD Control Products

Companies can invest thousands of dollars in purchasing and installing ESD control products but then waste their investment by never checking their ESD items. This results in ESD equipment that is out of specification. Without the tools in place to check their ESD items, companies may have no idea if they are actually working correctly. Remember: ESD products (like any other product) are subject to wear and tear, and other errors when workstations get moved, ground cords get disconnected…etc. The list goes on.

Step3 When investing in ESD control products, make sure you also establish a Compliance Verification Plan. This ensures that:

  • ESD equipment is checked periodically
  • Necessary test equipment is available
Step2 A compliance verification plan shall be established to ensure the organization’s fulfilment of the requirements of the plan. Process monitoring (measurements) shall be conducted in accordance with a compliance verification plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The compliance verification plan shall document the test methods used for process monitoring and measurements. If the organization uses different test methods to replace those of this standard, the organization shall be able to show that the results achieved correlate with the referenced standards. Where test methods are devised for testing items not covered in this standard, these shall be adequately documented including corresponding test limits. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements.
The test equipment selected shall be capable of making the measurements defined in the compliance verification plan.
”[ANSI/ESD clause 7.4 Compliance verification plan]

We provide detailed instructions on how to create a Compliance Verification Plan in this post.

4. Improperly Re-Using Shielding Bags / Using Shielding Bags with Holes or Scratches

ESD Shielding Bags are used to store and transport ESD sensitive items. When used properly, they create a Faraday Cage effect which causes charges to be conducted around the outside surface. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’. However, if the shielding layer of an ESD Shielding Bag is damaged, ESD sensitive items on the inside will not be protected anymore.

Step3 Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

Use a system of labels to identify when the bag has gone through five (5) handling cycles. When there are five broken labels, the bag is discarded.

Step2 ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.

Transportation of ESDS items outside an ESD Protected Area (hereafter referred to as “EPA”) requires enclosure in static protective materials, although the type of material depends on the situation and destination. Inside an EPA, low charging and static dissipative materials may provide adequate protection. Outside an EPA, low charging and static discharge shielding materials are recommended. While these materials are not discussed in

the document, it is important to recognize the differences in their application. For more clarification see ANSI/ESD S541.

[ANSI/ESD Foreword]

This post provides further “dos and don’ts” when using ESD Shielding Bags.

5. Using Household Cleaners on ESD Matting

The use of standard household cleaners on ESD matting can put an ESD Control Program at risk and damage the ESD properties of items. Many household cleaners contain silicone or other insulative contaminants which create that lovely shine you get when wiping surfaces in your home. The problem is that silicone and other chemical contaminates can create an insulative layer which reduces the grounding performance of the mat.

Step3 Don’t spend all this extra money on ESD matting and then coat it with an insulative layer by using household cleaners. There are many specially formulated ESD surface and mat cleaners available on the market. Only clean your ESD working surfaces using those cleaners.
Step2 “Periodic cleaning, following the manufacturer’s recommendations, is required to maintain proper electrical function of all work surfaces. Ensure that the cleaning products used to not leave an electrically insulative residue which is common with some household cleaners that contain silicone.”

[ESD TR20.20 Handbook Worksurfaces clause 10.5 Maintenance]


There are many more issues we see when setting foot into EPAs and the above list is by no means complete. These are the most common issues we’ve found when assessing EPAs.

It is important to train all personnel using ESD products and/or equipment to follow proper ESD control programs, and maintenance procedures to avoid common ESD control mistakes. Basic ESD control principles should be followed for an ESD control program to be successful:

  • Ground conductors.
  • Remove, convert or neutralize insulators with ionizers.
  • Shield ESD sensitive items when stored or transported outside the EPA.

What mistakes do you commonly see when walking through an EPA? Let us know what you commonly see in the comments and your solutions for fixing them!

For more information on how to get your ESD control program off the ground and create an EPA, check this post.

We already know that in an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same potential which is achieved by using ‘groundable’ materials that are then linked to ground. We have also learnt that the most common personnel grounding device to link people to ground are wrist straps. People who are moving around should instead wear ESD footwear.

So how do you know if your wrist straps and ESD footwear are working properly? Excellent question! And one we’ll answer in today’s post so let’s jump right in!

Purpose of Personnel Grounding Testers

Wrist straps and ESD footwear should be part of your Verification Plan. Each component in an EPA plays a vital part in the fight against electrostatic discharge (ESD). If just one component is not performing correctly, ESD sensitive devices can be damaged, potentially costing your company thousands of dollars.

Wrist straps and ESD footwear can fail and damage cannot always be detected by visual inspection. Just by looking at the items you would not know if they still provide sufficient protection. Personnel grounding testers should be used to provide feedback to verify the functionality of an operator’s wrist strap and/or footwear.

Your Personnel Grounding Checklist - Wear, Verify, Log, Handle
Your Personnel Grounding Checklist

Your Personnel Grounding Checklist:

  1. Wear your personnel grounding equipment such a wrist strap and/or footwear
  2. Verify your personnel grounding system using a wrist strap and/or footwear tester. Wrist straps and footwear, need to be tested at least daily before handling ESD sensitive devices and should be worn while checking.
  3. Log a record of each test. Records should be kept for quality control purposes.
  4. Handle ESD sensitive components ONLY if your wrist strap and/or footwear pass(es) the test.

Types of Personnel Grounding Testers

Personnel grounding testers can be purchased in two configurations:

  • Wrist strap tester
  • Wrist strap and footwear tester

As wrist straps are the most commonly used personnel grounding device to ground operators, you will find a lot of testers on the market that check wrist straps only. Combined wrist strap and footwear testers will verify your wrist straps AND footwear.

In addition to WHAT the testers verify, you will also be faced with a wide range of devices differing in HOW they test. Below you will see a (by no means complete) list of options:

  • Continuous and split footplate: You will find testers with a continuous footplate which require each foot to be tested separately one after the other. Dual-footplate or independent footwear testers feature a split footplate which allows the unit to verify both feet independently at the same time. This can be an efficient time-saver if you have a number of operators in your company who are required to check their personnel grounding devices.
  • Portable, wall-mountable and fitted testers: Portable battery-powered (predominantly) wrist strap testers are suitable for small labs or for supervisors to spot-check workers and ensure compliance. Wall-mountable units are generally supplied with a wall plate which attaches to a wall; the tester is then mounted on to the wall plate. Some personal grounding devices are accompanied by a stand (and built-in footplate) which allow for a more freely positioning of the unit within a room.
  • Relay terminal: A few testers on the market are fitted with a relay terminal (electrically operated switch) that can be integrated with electronic door locks, turnstiles, lights, buzzers, etc. This can be of advantage if companies only want to allow personnel in an EPA that have passed their wrist strap and/or footwear test.
  • Data acquisition: A growing number of personnel grounding devices allow for test activity data to be logged in a database. The units link to a computer which records operator identification, test results, resistance measurements, time and more. Paperless data can enhance operator accountability, immediately identifying problems while reducing manual logging and auditing costs.

Operation of Personnel Grounding Testers

Wrist strap testing:

If you are not using a continuous or a constant monitor, a wrist strap should be tested at least daily. This quick check can determine that no break in the path-to-ground has occurred. Wrist straps should be worn while they are tested. This provides the best way to test all three components:

  • the wrist band
  • the ground cord (including the resistor)
  • the interface (contact) with the operator’s skin
The SCS Combo Wrist Strap/ Footwear Tester
The SCS Combo Tester can be used to test wrist straps – more information

To ensure that the resistance to ground of personnel is within specification it is important to measure the entire system (i.e., wrist strap, person, and ground connection). The wrist strap system test method is described in ANIS/ESD S1.1. In general, the test method measures the resistance of the ground cord, wristband or cuff, and the interface of the band or cuff of the wearer.” [Handbook ESD TR20.20 Clause 8.2 Wrist Strap System]

The wrist strap system should be tested daily to ensure proper electrical resistance. Nominally, the upper resistance reading should be < 35 megohms or a user-defined resistance. Daily test records can provide evidence of conformity. Daily testing may be omitted if continuous monitors are used.” [ANSI/ESD S1.1 Clause A3. Frequency of System Testing]

If the wrist strap tester outputs a FAIL test result, stop working and test the wrist band and cord individually to find out which item is damaged. Replace the bad component and repeat the test. Obtain a PASS test result before beginning work. For more information on troubleshooting failed wrist straps, check this post.

Footwear testing:

If you are using a flooring / footwear system as an alternative for standing or mobile workers, ESD footwear should be tested independently at least daily while being worn. Proper testing of foot grounders involves the verification of:

  • the individual foot grounder
  • the contact strip
  • the interface between the contact strip and the operator’s perspiration layer

a) Place the foot grounders on the user’s shoes per the manufacturer’s instructions.
b) Place the left foot on the floor plate and touch the body contact area on the tester with one hand. Activate the tester per the manufacturer’s instructions.
c) Remove the left foot from the floor plate.
d) Repeat steps b and c with the right foot.
[ANSI/ESD SP9.2 Clause 6.2.2 Procedure (Integrated Tester)]

The SCS Dual Combination Tester is used to test wrist straps and footwear
The SCS Dual Combination Tester is used to test wrist straps and footwear – more information

If the footwear tester outputs a FAIL test result, stop working, and test the foot grounder and contact strip individually to find out which item is damaged. Replace the foot grounder. Obtain a PASS test result before beginning work.


Wrist straps and footwear need to be tested at least daily before handling any ESD sensitive devices. Personnel grounding devices need to be worn for verification using a wrist strap and/or footwear tester.

A record of each test has to be kept for quality control purposes.

Only handle ESD sensitive components if your wrist strap and/or footwear pass(es) the test.