We occasionally hear from customers who have ESD footwear (Foot Grounders or ESD Shoes) that is failing high on their ESD footwear tester (personnel grounding tester). There is often an assumption that the issue is a faulty tester or out of spec footwear. However, most of the time the problem turns out to be as simple as a “bad match”. This is between the upper resistance setting of the footwear tester and the resistance of the ESD footwear.
The first step in identifying the cause of the problem is to identify the upper limit setting of the tester being used.
Upper Test Limits of ESD Testers
The upper limit settings on SCS footwear testers are:
The upper limit is 1 gigaohm or 1 x 109 ohms however the factory setting 35 megaohm or 3.5 x 107 ohms
SmartLog Pro
The upper limit 1 gigaohm or 1 x 109 ohms however the factory setting 35 megaohm or 3.5 x 107 ohms
Identifying the Resistance of the ESD Footwear
The next step is to identify the resistance of the ESD footwear being used, both by itself and with a person wearing the footwear.
Heel Grounders/Foot Grounders
Foot Grounder Test
Test Method 1 – Resistance of the Foot Grounder
Using a surface resistance tester and its alligator clip, clip the lead to the foot grounder tab
Clip the other lead to the cup material
This test will tell you the overall resistance of the tab, resistor (if there is one), and the cup material
If the foot grounder tab to cup resistance exceeds the upper limit of the footwear tester it’s very likely that you won’t pass on the tester.
Test Method 2 – Resistance of the Foot Grounder and Person Together
Use test method from TR53-01-15, 8.3.2 Meter, which has been summarised below:
Use a surface resistance tester, a handheld electrode and a foot electrode
Have the person hold the handheld electrode connect to one lead
Have the other lead connected to the foot electrode
Place one foot on the foot electrode making sure your other foot is not on an ESD floor or the electrode
This test will tell you the overall resistance of the whole foot grounder and person.
If the result is higher than the upper limit of your footwear tester you will not pass at the tester.
ESD Shoes
When we hear about ESD Footwear failing regularly at the personnel grounding tester, more often than not it is ESD Shoes that are failing rather than foot grounders.
Test Method 1 – Resistance of the ESD Shoes Using Foot Plate Electrode
Place the shoe on a metal plate.
Put the 5 lb weight from the surface resistance meter inside the shoe.
Place the other weight on the metal plate next to the shoe.
Lean on the weight inside the shoe and test.
This will give the resistance of the shoe itself from inside the shoe to the bottom of the shoe.
ESD Shoe test with footplate
ESD Shoe Test with 5 lb Electrodes
Test Method 2 – Resistance of the ESD Shoe Using Two 5 lb Electrodes
Put one of the 5 lb weights from the surface resistance meter inside the shoe.
Put the other weight on the sole of shoe, make like a sandwich
Press the Test
See what the resistance of the shoe is using either of these methods and compare it to the testers upper limit.
Perform the TR53 test below, see what the resistance is of the person and ESD shoe while the shoe is being worn.
The same test from TR53 used for foot grounders above can also be used for ESD Shoes. This will provide you with the total resistance is of the person and ESD shoe.
Conclusion
The tests above will identify a clear discrepancy between footwear resistance and tester settings, but there can also be other factors in play. These factors should be considered when the footwear resistance and the tester settings are close to being the same.
Tester accuracy
Test voltage
Weight of personnel
Sock thickness and material
Humidity
Any questions regarding this post, please get in contact.
Welcome back to “A Minute with Miranda.” This week we will be covering how to test ESD footwear entering an ESD Protected Area (EPA).
Per the ESD Handbook ESD TR20.20, A system test of the footwear in combination with the existing or proposed flooring materials in the plant should be made to ensure that the criteria for the facility are met. When using a footwear checker it is important to make sure the upper and lower resistance limits of the checker match the user’s requirements. When testing the footwear should test within the range of 1 x 106 to 1 x 108 ohms.
Heel, sole and toe grounders should be worn on both feet to ensure effective use. They should be worn by all personnel and visitors within an ESD controlled area. If worn improperly, the heel, sole and toe grounders become ineffective. ESD footwear should be tested daily before use within an ESD Protected Area (EPA).
Welcome back to “A Minute with Miranda.” This week we will be covering why you need to use ESD footwear within your ESD Protected Area (EPA).
Per the ESD Handbook ESD TR20.20, Personnel may also be grounded through the use of ESD footwear with an ESD Flooring system. This method is useful for situations where personnel are mobile or standing in areas where a wrist strap is not feasible and ESDS items must be handled or transported. ESD protective footwear is designed to reduce body charge levels by providing a conductive path from the body to the ESD flooring material.
Heel, sole and toe grounders should be worn on both feet to ensure effective use. They should be worn by all personnel and visitors within an ESD controlled area. If worn improperly, the heel, sole and toe grounders become ineffective. ESD footwear should be tested daily before use within an ESD Protected Area.
Many companies implement an ElectroStatic Discharge (ESD) Control Program with the aim of improving their operations. Effective ESD control can be a key to improving:
Productivity
Quality
Customer Satisfaction
Problems arise when an organization invests in ESD protective products and/or equipment and then misuses them. Misuse of ESD protective products and/or equipment wastes invested money and can also be causing more harm than good. Today’s blog post will highlight some of the major issues we have come across and how you can avoid or fix them.
About ESD Control and ESD Protection
Remember that for a successful ESD control program, ESD protection is required throughout the manufacturing process: from goods-in to assembly all the way through to inspection. Anybody who handles electrical or electronic parts, assemblies or equipment that are susceptible to damage by electrostatic discharges should take necessary precautions.
Just like viruses or bacteria that can infect the human body, ESD can be a hidden threat unable to be detected by human eyes. Hidden viral/bacterial threats in hospitals are controlled by extensive contamination control procedures and protective measures such as sterilization. The same principles apply to ESD control: you should never handle, assemble or repair electronic assemblies without taking adequate protective measures against ESD.
Common Mistakes in ESD Control
1. Ionizers are poorly maintained or out-of-balance
If an ionizer is out of balance, instead of neutralizing charges, it will produce primarily positive or negative ions. This results in placing an electrostatic charge on items that are not grounded, potentially discharging and causing ESD damage to nearby sensitive items.
Remember to clean emitter pins and filters using appropriate tools. Create a regular maintenance schedule which will extend the lifespan of your ionizers tremendously.
Consider using ionizers with “Clean Me” and//or “Balance” alarms. These will alert you when maintenance is required.
“All ionization devices will require periodic maintenance for proper operation. Maintenance intervals for ionizers vary widely depending on the type of ionization equipment and use environment. Critical clean room use will generally require more frequent attention. It is important to set up a routine schedule for ionizer service.”
If you would like to learn more about how ionizers work and what type of ionizer will work best for your application, check out this post for detailed coverage.
2. ESD Garments are Ungrounded
We’ve seen it so many times: operators wearing an ESD coat (without appropriate wrist straps and/or footwear/flooring) thinking they are properly grounded. However, without proper electrical bonds to a grounding system they are not grounded!
Every ESD garment needs to be electrically bonded to the grounding system of the wearer. Otherwise it just acts as a floating conductor. There are a few options to choose from:
Wrist Straps
ESD footwear/flooring
Hip-to-Cuff grounding
“After verifying that the garment has electrical conductivity through all panels, the garment should be electrically bonded to the grounding system of the wearer so as not to act as a floating conductor.
This can be accomplished by several means:
Ground the garment to the body through a wrist strap-direct connection with an adapter.
Ground the garment through conductive wrist or heel cuffs in direct contact with the skin of a grounded operator.
Ground the garment through a typical separate ground cord, directly attached to an identified groundable point on the garment.
Garments should be worn with the front properly snapped or buttoned to avoid exposure of possible charge on personal clothing worn under the garment.”
ESD clothing loses their ESD properties over time. It is therefore an important part of the ESD Control Program to incorporate periodic checks (see #3 below) of ESD garments.
If you need more information on ESD garments, we recommend having a look at this post.
3. No Compliance Verification Plan / Not Checking ESD Control Products
Companies can invest thousands of dollars in purchasing and installing ESD control products but then waste their investment by never checking their ESD items. This results in ESD equipment that is out of specification. Without the tools in place to check their ESD items, companies may have no idea if they are actually working correctly. Remember: ESD products (like any other product) are subject to wear and tear, and other errors when workstations get moved, ground cords get disconnected…etc. The list goes on.
When investing in ESD control products, make sure you also establish a Compliance Verification Plan. This ensures that:
ESD equipment is checked periodically
Necessary test equipment is available
“A compliance verification plan shall be established to ensure the organization’s fulfilment of the requirements of the plan. Process monitoring (measurements) shall be conducted in accordance with a compliance verification plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The compliance verification plan shall document the test methods used for process monitoring and measurements. If the organization uses different test methods to replace those of this standard, the organization shall be able to show that the results achieved correlate with the referenced standards. Where test methods are devised for testing items not covered in this standard, these shall be adequately documented including corresponding test limits. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements.
The test equipment selected shall be capable of making the measurements defined in the compliance verification plan.”[ANSI/ESD clause 7.4 Compliance verification plan]
We provide detailed instructions on how to create a Compliance Verification Plan in this post.
4. Improperly Re-Using Shielding Bags / Using Shielding Bags with Holes or Scratches
ESD Shielding Bags are used to store and transport ESD sensitive items. When used properly, they create a Faraday Cage effect which causes charges to be conducted around the outside surface. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’. However, if the shielding layer of an ESD Shielding Bag is damaged, ESD sensitive items on the inside will not be protected anymore.
Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.
Use a system of labels to identify when the bag has gone through five (5) handling cycles. When there are five broken labels, the bag is discarded.
ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.
“Transportation of ESDS items outside an ESD Protected Area (hereafter referred to as “EPA”) requires enclosure in static protective materials, although the type of material depends on the situation and destination. Inside an EPA, low charging and static dissipative materials may provide adequate protection. Outside an EPA, low charging and static discharge shielding materials are recommended. While these materials are not discussed in
the document, it is important to recognize the differences in their application. For more clarification see ANSI/ESD S541. “
[ANSI/ESD Foreword]
This post provides further “dos and don’ts” when using ESD Shielding Bags.
5. Using Household Cleaners on ESD Matting
The use of standard household cleaners on ESD matting can put an ESD Control Program at risk and damage the ESD properties of items. Many household cleaners contain silicone or other insulative contaminants which create that lovely shine you get when wiping surfaces in your home. The problem is that silicone and other chemical contaminates can create an insulative layer which reduces the grounding performance of the mat.
Don’t spend all this extra money on ESD matting and then coat it with an insulative layer by using household cleaners. There are many specially formulated ESD surface and mat cleaners available on the market. Only clean your ESD working surfaces using those cleaners.
“Periodic cleaning, following the manufacturer’s recommendations, is required to maintain proper electrical function of all work surfaces. Ensure that the cleaning products used to not leave an electrically insulative residue which is common with some household cleaners that contain silicone.”
There are many more issues we see when setting foot into EPAs and the above list is by no means complete. These are the most common issues we’ve found when assessing EPAs.
It is important to train all personnel using ESD products and/or equipment to follow proper ESD control programs, and maintenance procedures to avoid common ESD control mistakes. Basic ESD control principles should be followed for an ESD control program to be successful:
Ground conductors.
Remove, convert or neutralize insulators with ionizers.
Shield ESD sensitive items when stored or transported outside the EPA.
What mistakes do you commonly see when walking through an EPA? Let us know what you commonly see in the comments and your solutions for fixing them!
For more information on how to get your ESD control program off the ground and create an EPA, check this post.
When talking about ESD Classifications a little while ago, we identified a “class 0” item as withstanding discharges of less than 250 volts.
The introduction of ANSI/ESD S20.20 states: “This standard covers the requirements necessary to design, establish, implement and maintain an Electrostatic Discharge (ESD) Control Program for activities that manufacture, process, assemble, install, package, label, service, test, inspect or otherwise handle electrical or electronic parts, assemblies and equipment susceptible to damage by electrostatic discharges greater than or equal to 100 volts Human Body Model (HBM) and 200 volts Charged Device Model (CDM).”
So how do you handle items that are susceptible to voltages of less than 100V? That’s what we’re going to answer in today’s blog post.
Introduction
Years ago, it was common for devices to be vulnerable to voltages greater than 100 V. As the need for smaller and faster devices increased, so did their sensitivity to ElectroStatic Discharges as circuit-protection schemes were removed to stay ahead of the market. These new extremely sensitive components are now susceptible to discharges nearing 0 V. This causes problems for companies handling these devices: while their ESD program may be in compliance with the ESD Standard, extremely sensitive devices require tighter ESD Control to protect them from ESD failures.
What is a “Class 0” device?
Before moving any further, we need to qualify the term “class 0”. As stated above, the HBM Model refers to any item with a failure voltage of less than 250 V as a “class 0” component. However, in recent times, the term has been used more and more to describe ultra-sensitive devices with failure voltages of less than 100 V. Whilst the following tips and tricks work on any “class 0” item, they are specifically designed to protect extremely sensitive items that withstand discharges of less than 100 V.
Ultra-sensitive devices are extremely common
Before Updating Your ESD Program
“Class 0” refers to a wide range of items and there are a few things you should remember before making any changes to your existing ESD program:
Verify what ESD Model your company/engineers/customers etc. are referring to. As we have learnt in the past, there are different ESD models (HBM, CDM, MM) as well as individual classifications for each model. A lot of people get confused when it comes to citing ESD classifications. There is only one “class 0” which refers to the human body model (HBM) but it’s always best to check.
Check the specific withstand voltage an individual part is susceptible to. “Class 0” refers to all items that withstand discharges of less than 250 V. However, there is a big difference between a failure voltage of 240 V or 50 V. You need to have detailed ESD sensitivity information available before being able to make decisions on how to improve your existing ESD control program. This step is part of creating a compliance verification plan.
A part’s ESD classification is only of importance until it is ‘merged’ into an assembly. So, the ESD classification of a device only refers to the stand-alone component. Once it goes into another construction, the classification of the whole assembly is likely to change.
Tips for handling “Class 0” Items
Below are 6 tips that will help your company to upgrade your ESD control program so you can effectively and efficiently handle ultra-sensitive items without risking ESD damage.
One thing to note: The best approach to stay ahead of the game is taking proactive actions. It is critical to figure out how to protect your components from ESD damage before you receive them. If actions are taken after components are received, the components are susceptible to receiving ESD damage.
1. Improve Grounding
Inside an EPA, all conductors (including people) are grounded. Now you’re probably thinking: “But I’ve already grounded my operators and worksurfaces. What else is there left to do?”. Firstly, well done for properly grounding the ‘objects’ in your EPA. The next step is to adjust and improve your current program to allow for even better protection. Here are some suggestions:
Personnel:
Decrease the wrist strap and ESD footwear upper limit. The ESD Association has test data showing charge on a person is less as the path-to-ground resistance is less.
Full coverage foot grounders are recommended when handling ultra-sensitive devices
Worksurfaces:
Reduce the required limit for Point-to-Point resistance of 1 x 109 per the ESD Standard to 106 to 108 ohms (see #5). The reason for this reduction is simple: 1 x 109 is too high as it still produces thousands of volts of in electrostatic charges. However, the resistance cannot be too small either as this can lead to a sudden ‘hard discharge’ potentially damaging ESD sensitive components.
Other:
Improve grounding of carts, shelves and equipment to Ground
Minimize isolated conductors like devices on PCBs
2. Minimize Charge Generation
The best form of control is to minimize charge generation. First, you should always use shielding packing products like bags or containers (especially when outside an EPA) as these protect from generating charges in the first place. For more information on choosing the correct type of ESD Packaging, we recommend reading this post.
The next step is to eliminate charges once they are generated – this can be achieved through grounding and ionization. We’ll cover ionization in #3 and #4. We’ve already talked about improved grounding in #1. However, for ultra-sensitive components, we also recommend the following:
Personnel: Use low-charging floor finish
Surfaces: Use low-charging topical antistatic treatments
Both types of ESD products create a low tribocharging coating which allows charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts.
3. Remove Insulators
When talking about conductors and insulators, we explained that insulators cannot be grounded and can damage nearby sensitive devices with a sudden uncontrolled discharge. It is therefore critical to eliminate ALL insulators that are not required in your EPA: plastic cups, non-ESD brushes, tapes etc. How? Here are a couple of options:
Replace regular production supplies and fixtures with dissipative, low charging versions, e.g. ESD dissipative brushes, ESD dispensers, ESD tape, ESD Chairs etc.
If an insulator is absolutely necessary for production and cannot be removed from the EPA, you could consider a topical treatment which will reduce triboelectric charges.
Is this not an option, then move on to tip #4.
4. Use Ionization
First, ionization is not a cure-all. We’ve learnt that ionizers neutralize charges on an insulator.
However, that does not mean that you can just have any insulator in your EPA because the ionizer will “just fix it”. No, in this instance, prevention is generally a better option than the cure. So, your priority should ALWAYS be to remove non-process essential insulators from your EPA – see tip #3. If this is not possible – then ionization becomes essential.
Ionization:
Ionizers can be critical to reduce induction charging caused by process necessary insulators
Ionizers can be critical in eliminating charges on isolated conductors like devices on PCBs
Offset voltage (balance) and discharge times are critical considerations depending on the actual application
Ionization can reduce ElectroStatic Attraction (ESA) and charged particles clinging and contaminating products.
It is recommended to use ionizers with feedback mechanisms, so you’re notified if the offset voltage is out of balance.
5. Increase ESD Training and Awareness
ESD Training is a requirement of every ESD Program. When handling ultra-sensitive devices, it is even more important to remind everyone what pre-cautions are necessary to avoid damage. Regular ‘refreshers’ are a must and it is recommended to verify the effectiveness of the training program, e.g. through tests. So, who, when and what should be taught?
ESD Training is a vital part of every successful ESD Control Program
ESD training needs to be provided to everyone who handles ESD sensitive devices – that includes managers, supervisors, subcontractors, visitors, cleaners and even temporary personnel.
Training must be given at the beginning of employment (BEFORE getting anywhere near a sensitive products) and in regular intervals thereafter.
Training should be conducted on proper compliance verification procedures and on the proper use of equipment used for verification.
6. Create an enhanced Compliance Verification Plan
We talked in a previous post about compliance verification, what it is and how to create a plan that complies with the ESD standard. So, if you already followed our steps and have a plan in place, here are a few tips to improve your compliance verification plan:
Use a computer data collection system for wrist straps and foot grounders testing
Increase the test frequency of personnel grounding devices from once per day to every time the operator enters the EPA
Use continuous monitors where operators are grounded via wrist straps. Consider computer based monitor data collection system, e.g. SMP. This should include continuous monitoring of the mat Ground.
Use Ground continuous monitors, e.g. Ground Master. At a large facility, the most frequent reoccurring violation is the ESD mat ground cord either becoming disconnected from the mat or grounding point. As Ground continuous monitors will only test the fact that the mat is grounded, it is still imperative that the Resistance to Ground of the mat is regularly tested. Remember that the use of improper mat cleaners can raise the mat surface resistance above the upper recommended level of <109
Test ionizers more frequently or consider self-monitoring ionizers. Computer based data collection systems are a good alternative, too.
Increase the use of a static field meter and nano coulomb testing to verify that automated processes (like auto insertion, tape and reel, etc.) are not generating charges above acceptable limits.
Conclusion
“Class 0” items require additional measures of ESD protection due to their sensitivity to ESD damage. The best way to protect these ultra-sensitive components is to increase ESD protective redundancies and periodic verifications to all ESD Control technical elements.
To decrease the probability of ESD damage while handling ultra-sensitive items, additional precautions are required. This includes additional and/or more stringent technical requirements for ESD control products, increasing redundancies, and more frequent periodic verifications or audits.
Additionally, ESD control process systems should be evaluated as to their performance as a system. It is important to understand how the technical elements in use perform relative to the sensitivity of the devices being handled. Thus, tailoring the process to handle the more sensitive parts. For example: If the footwear/flooring allows a person’s body voltage to reach 80 volts and a 50 withstand voltage item gets introduced into the process, you must either allow only handling via wrist straps or would have to find a way to modify the footwear/flooring performance to get peak voltages below the 50 volt threshold.
Remember: The ESD Standard gives recommendations that will always be behind current/future developments. As soon as a Standard is published, technology will have progressed. In order to protect your devices and company reputation for reliable devices – it is recommended your company take responsibility to implement methods/procedures that exceed the recommendations of the ESD Standard to fit your sensitive component requirements.
People pose the biggest threat to ESD sensitive components. However, when properly trained, operators can become the key weapon in the fight against ESD. Every person coming into contact with ESD sensitive items should be able to prevent ESD related problems before they occur or provide immediate action when they do occur. Today’s blog post will explain in detail the role operators play in ESD Protection and how your company can support them in the fight against ESD.
Introduction As an employee, the invisible threat of ESD should be of great concern to you. ESD damage can significantly reduce your company’s profitability. This may affect your company’s ability to compete in the marketplace, your profit sharing and even your employment. Everyone likes to take pride in their work, but without proper ESD controls, your best efforts may be destroyed by ElectroStatic discharges that you can neither feel nor see.
People are often a major factor in the generation of static charges
Perhaps the most important factor in a successful static control program is developing an awareness of the “unseen” problem. People are often a major factor in the generation of static charges. Studies have shown that personnel in a manufacturing environment frequently develop 5000 volts or more by just walking across the floor. This is “tribocharging” produced by the separation of their shoes and the flooring as they walk.
A technician seated at a non-ESD workbench could easily have a 400-500 volt charge on his or her body caused not only by friction or tribocharging but additionally by the constant change in body capacitance that occurs from natural movements. The simple act of lifting both feet off the floor can raise the measured voltage on a person by as much as 500-1000 volts.
Educating your personnel is therefore an essential basic ingredient in any effective static control program. A high level of static awareness must be created and maintained in and around the ESD protected area. Once personnel understand the potential problem, it might help to reinforce this understanding by hanging up a few static control posters in strategic locations. No technician needs an unprotected person wandering over and touching things on the service bench.
The invisible enemy The biggest issue with ElectroStatic discharges is that you can neither see nor feel the threat. Daily life has other examples of hidden enemies where careful procedures must be followed to regularly obtain positive results. One example is sterilization which combats germs and contamination in hospitals.
Damage caused by invisible and undetectable events can be understood by comparing ESD damage to medical contamination of the human body by viruses or bacteria. Although invisible, they can cause severe damage. In hospitals, the defense against this invisible threat is extensive contamination control procedures including sterilization.
Would you consider having surgery in a contaminated operating room?
We are aware of the benefits of sterilization in medicine. We must develop the same attitude towards ESD control and “sterilize” against its contamination. Just as you would never consider having surgery in a contaminated operating room, you should never handle, assemble or repair electronic assemblies without taking adequate measures against ESD. For the hospital to sterilize most of the instruments is not acceptable; actually, it may waste money. Every single instrument needs to be sterilized. Likewise, it is not acceptable to protect the ESD sensitive items most of the time. Effective ESD control must occur at each and every step where ESDS items are manufactured, processed, assembled, installed, packaged, labelled, serviced, tested, inspected, transported or otherwise handled.
Everyone handling sensitive components should:
It is obvious that ESD training of personnel is a prerequisite for a functioning ESD control program.
Training ESD training needs to be provided to everyone who handles ESD sensitive devices – that includes managers, supervisors, subcontractors, cleaners and even temporary personnel. Training must be given at the beginning of employment (BEFORE getting anywhere near an ESDS) and in regular intervals thereafter.
“Initial and recurrent ESD awareness and prevention training shall be provided to all personnel who handle or otherwise come into contact with any ESDS [ESD sensitive] items. Initial training shall be provided before personnel handle ESDS items. The type and frequency of ESD training for personnel shall be defined in the Training Plan. The Training Plan shall include a requirement for maintaining employee training records and shall document where the records are stored. Training methods and the use of specific techniques are at the Organization’s discretion. The training plan shall include the methods used by the Organization to verify trainee comprehension and training adequacy.” [ANSI/ESD S20.20-2007 section 7.2]
Training is an essential part of an ESD Control Program
ESD training should include:
an introduction to ESD – what it is, what it’s caused by and how to control it
how to handle sensitive devices and what precautions to take when coming into contact with them
how to identify and mark ESD sensitive items
an overview of the ESD Standard.
For operators working in assembly, repair or field service, job specific training will be required, too.
If visitors are entering an EPA, they must possess basic ESD awareness and understand how to use their wrist straps and footwear.
Operator’s safety comes first One final word of warning: while ESD control is important, it is of secondary importance to employee safety. ElectroStatic charges or static electricity can be everywhere; however, conductors can be effectively grounded and charges removed to ground. A fundamental rule in ESD control is to ground all conductors, including people. BUT: Personnel should not be grounded in situations where they could come into contact with voltage over 250 volts AC.
If you followed our tips to fight ESD, you will have already identified all ESD sensitive items in your factory. You’re now at a point where you realize that you need to implement ESD Control measures. But where do you start? There is so much information out there and it can be completely overwhelming. But don’t panic – today’s blog post will provide you with a step-by-step guide on how to set-up a suitable ESD Control Plan.
“The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
Training
Product Qualification
Compliance Verification
Grounding / Equipotential Bonding Systems
Personnel Grounding
ESD Protected Area (EPA) Requirements
Packaging Systems
Marking
The ESD Control Program Plan is the principal document for implementing and verifying the Program. The goal is a fully implemented and integrated Program that conforms to internal quality system requirements. The ESD Control Program Plan shall apply to all applicable facets of the Organization’s work.” [ANSI/ESD S20.20-2014 clause 7.1 ESD Control Program Plan]
“The selection of specific ESD control procedures or materials is at the discretion of the ESD Control Program Plan preparer and should be based on risk assessment and the established ESD sensitivities of parts, assemblies, and equipment.” [ANSI/ESD S20.20-2014 Annex B]
Define what you are trying to protect A prerequisite of ESD control is the accurate and consistent identification of ESD susceptible items. Some companies assume that all electronic components are ESD susceptible. However, others write their ESD Control Plan based on the device and item susceptibility or withstand voltage of the most sensitive components used in the facility. Per ANSI/ESD S20.20-2014 section 6.1 “The Program shall document the lowest level(s) of device ESD sensitivity that can be handled.” A general rule is to treat any device or component that is received in ESD protective packaging as an ESD susceptible item.
An operator handling an ESD susceptible item
Become familiar with the industry standards for ESD control A copy of ANSI/ESD S20.20-2014 can be obtained from the ESD Association. It covers the “Development of an Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices)” and “provides administrative and technical requirements for establishing, implementing and maintaining an ESD Control Program.”Also, consider purchasing the ESDA’s ESD Handbook ESD TR20.20-2016 for guidance on the implementation of the standard.
Select a grounding or equipotential bonding system “Grounding / Equipotential Bonding Systems shall be used to ensure that ESDS items, personnel and any other conductors that come into contact with ESDS items are at the same electrical potential.” [ANSI/ESD S20.20-2014 section 8.1 Grounding / Equipotential Bonding Systems]
The elimination of differences in electrostatic charge or potential can be achieved in three different ways:
– Equipment Grounding Conductor
– Auxiliary Ground
– Equipotential Bonding
Equipment grounding conductor: the first and preferred ESD ground is the electrical system’s ground or equipment ground. In this case, the ESD control elements and grounded personnel are connected to the three-wire electrical system equipment ground;
Grounding using auxiliary ground: the second acceptable ESD ground is achieved through the use of an auxiliary ground. This conductor can be a ground rod or stake that is used for grounding the ESD control elements in use at a facility. In order to eliminate differences in potential between protective earth and the auxiliary ground system it is required that the two systems be electrically bonded together with a resistance less than 25 ohms;
Equipotential bonding: in the event that a ground facility is not available, ESD protection can be achieved by connecting all of the ESD control elements together at a common connection point.
Determine the grounding method for operators (Personnel Grounding) The two options for grounding an operator are:
a wrist strap or
footwear / flooring system
Wrist straps must be worn if the operator is seated. We will talk about wrist straps in more detail at a later point. For now, remember to connect the coil cord part of the wrist strap to a Common Point Ground so that any charges the operator may generate can be removed to Ground.
An operator using a wrist strap as a grounding method
A footwear / flooring system is an alternative for standing or mobile workers. ESD footwear needs to be worn on both feet and only works as a grounding device if it is used in conjunction with an ESD floor. Just like with wrist straps, a future blog post will clarify the ins and outs of ESD footwear.
An operator using foot grounders on an ESD floor as a personnel grounding method
In some cases, both (wrist strap and foot grounders) will be used.
Establish and identify your ESD Protected Area (EPA) ESD Control Plans must evolve to keep pace with costs, device sensitivities and the way devices are manufactured. Define the departments and areas to be considered part of the ESD Protected Area. Implement access control devices, signs and floor marking tape to identify and control access to the ESD Protected Area.
Select ESD control items or elements to be used in the EPA based on your manufacturing process Elements that should be considered include: worksurfaces, flooring, seating, ionization, shelving, mobile equipment (carts) and garments.
Develop a Packaging (Materials Handling & Storage) Plan When moving ESD susceptible devices outside an ESD protected area, it is necessary for the product to be packaged in an enclosed ESD Shielding Packaging. We will discuss ESD Packaging in more detail in a future blog post. All packaging, if used, should be defined for all steps of product manufacture whether inside or outside the EPA.
An operator packing an ESD sensitive item into a Shielding Bag
Use proper markings for ESD susceptible items, system or packaging From ANSI/ESD S20.20-2014 section 8.5: “ESDS items, system or packaging marking shall be in accordance with customer contracts, purchase orders, drawing or other documentation. When the contract, purchase order, drawing or other documentation does not define ESDS items, system or packaging marking, the Organization, in developing the ESD Control Program Plan, shall consider the need for marking. If it is determined that marking is required, it shall be documented as part of the ESD Control Program Plan.”
Implement a Compliance Verification Plan From ANSI/ESD S20.20-2014 section 7.4: “A Compliance Verification Plan shall be established to ensure the Organization’s fulfillment of the technical requirements of the ESD Control Program Plan.”. Our next post will explain in detail how to create and implement a Compliance Verification Plan so stay tuned…
However, developing and implementing an ESD Control Program is only the first step. The second step is to continually review, verify, analyse, evaluate and improve your ESD program:“Measurements shall be conducted in accordance with a Compliance Verification Plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications occur. The Compliance Verification Plan shall document the test methods and equipment used for making the measurements. If the test methods used by the Organization differ from any of the standards referenced in this document, then there must be a tailoring statement that is documented as part of the ESD Control Program Plan. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements.The test equipment selected shall be capable of making the measurements defined in the Compliance Verification Plan.” [ANSI/ESD S20.20-2014 section 7.4 Compliance Verification Plan]
Regular program compliance verification and auditing is a key part of a successful ESD Control Program.
Develop a Training Plan From ANSI/ESD S20.20-2014 section 7.2: “Initial and recurrent ESD awareness and prevention training shall be provided to all personnel who handle or otherwise come into contact with any ESDS items.”
Make the ESD Control Plan part of your internal quality system requirements A written ESD Control Plan provides the “rules and regulations”, the technical requirements for your ESD Control Program. This should be a controlled document, approved by upper management initially and over time when revisions are made. The written plan should include following:
Qualified Products List (QPL): a list of ESD control items permitted to be used in the ESD Control Program.
Compliance Verification Plan: includes periodic checking of ESD control items and calibration of test equipment per manufacturer and industry recommendations.
Training Plan: an ESD Program is only as good as the use of the products by personnel. When personnel understand the concepts of ESD control, the importance to the company of the ESD Control Program, and the proper use of ESD products, they will implement a better ESD Control Program improving quality, productivity and reliability.