ESD TR20.20

A Minute with Miranda – WS Aware Continuous Monitoring a Wrist Strap

Welcome back to “A Minute with Miranda.” This week we will be covering how to use the WS Aware Monitor for continuous monitoring of SCS wrist straps when at an ESD Workstation.

The SCS WS Aware Monitor is a dual workstation continuous monitor for operators, ESD Worksurfaces and metal tools. It will continuously monitor the path-to-ground integrity and body voltage of two operators. The WS Aware Monitor eliminates the need for periodic testing and record keeping of wrist straps. The WS Aware Monitor features operator body voltage detection. It will alarm if the operator generates or comes into contact with voltage that would be dangerous to an ESD susceptible item. Per the ESD Handbook ESD TR20.20 section 5.3.2.4.4 “Typical test programs recommend that wrist straps that are used daily should be tested daily. However, if the products that are being produced are of such value that knowledge of continuous, reliable ground is needed, then continuous monitoring should be considered or even required.”

View the full range of SCS WS Aware Monitors: https://staticcontrol.descoindustries…

5 Common Mistakes in ESD Control & How to Avoid Them

Many companies implement an ElectroStatic Discharge (ESD) Control Program with the aim of improving their operations. Effective ESD control can be a key to improving:

  • Productivity
  • Quality
  • Customer Satisfaction

Problems arise when an organization invests in ESD protective products and/or equipment and then misuses them. Misuse of ESD protective products and/or equipment wastes invested money and can also be causing more harm than good. Today’s blog post will highlight some of the major issues we have come across and how you can avoid or fix them.

About ESD Control and ESD Protection

Remember that for a successful ESD control program, ESD protection is required throughout the manufacturing process: from goods-in to assembly all the way through to inspection. Anybody who handles electrical or electronic parts, assemblies or equipment that are susceptible to damage by electrostatic discharges should take necessary precautions.

Just like viruses or bacteria that can infect the human body, ESD can be a hidden threat unable to be detected by human eyes. Hidden viral/bacterial threats in hospitals are controlled by extensive contamination control procedures and protective measures such as sterilization. The same principles apply to ESD control: you should never handle, assemble or repair electronic assemblies without taking adequate protective measures against ESD.

Common Mistakes in ESD Control

1. Ionizers are poorly maintained or out-of-balance

If an ionizer is out of balance, instead of neutralizing charges, it will produce primarily positive or negative ions. This results in placing an electrostatic charge on items that are not grounded, potentially discharging and causing ESD damage to nearby sensitive items.

Step3 Remember to clean emitter pins and filters using appropriate tools. Create a regular maintenance schedule which will extend the lifespan of your ionizers tremendously.

Consider using ionizers with “Clean Me” and//or “Balance” alarms. These will alert you when maintenance is required.

Step2.png All ionization devices will require periodic maintenance for proper operation. Maintenance intervals for ionizers vary widely depending on the type of ionization equipment and use environment. Critical clean room use will generally require more frequent attention. It is important to set up a routine schedule for ionizer service.”

[ESD TR20.20 Handbook Ionization clause 15.8 Maintenance / Cleaning]

If you would like to learn more about how ionizers work and what type of ionizer will work best for your application, check out this post for detailed coverage.

2. ESD Garments are Ungrounded

We’ve seen it so many times: operators wearing an ESD coat (without appropriate wrist straps and/or footwear/flooring) thinking they are properly grounded. However, without proper electrical bonds to a grounding system they are not grounded!

Step3 Every ESD garment needs to be electrically bonded to the grounding system of the wearer. Otherwise it just acts as a floating conductor. There are a few options to choose from:

  • Wrist Straps
  • ESD footwear/flooring
  • Hip-to-Cuff grounding
Step2 After verifying that the garment has electrical conductivity through all panels, the garment should be electrically bonded to the grounding system of the wearer so as not to act as a floating conductor.

This can be accomplished by several means:

  1. Ground the garment to the body through a wrist strap-direct connection with an adapter.
  2. Ground the garment through conductive wrist or heel cuffs in direct contact with the skin of a grounded operator.
  3. Ground the garment through a typical separate ground cord, directly attached to an identified groundable point on the garment.
  4. Garments should be worn with the front properly snapped or buttoned to avoid exposure of possible charge on personal clothing worn under the garment.

[ESD TR20.20 Handbook Garments clause 19.4 Proper Use]

ESD clothing loses their ESD properties over time. It is therefore an important part of the ESD Control Program to incorporate periodic checks (see #3 below) of ESD garments.

If you need more information on ESD garments, we recommend having a look at this post.

3. No Compliance Verification Plan / Not Checking ESD Control Products

Companies can invest thousands of dollars in purchasing and installing ESD control products but then waste their investment by never checking their ESD items. This results in ESD equipment that is out of specification. Without the tools in place to check their ESD items, companies may have no idea if they are actually working correctly. Remember: ESD products (like any other product) are subject to wear and tear, and other errors when workstations get moved, ground cords get disconnected…etc. The list goes on.

Step3 When investing in ESD control products, make sure you also establish a Compliance Verification Plan. This ensures that:

  • ESD equipment is checked periodically
  • Necessary test equipment is available
Step2 A compliance verification plan shall be established to ensure the organization’s fulfilment of the requirements of the plan. Process monitoring (measurements) shall be conducted in accordance with a compliance verification plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The compliance verification plan shall document the test methods used for process monitoring and measurements. If the organization uses different test methods to replace those of this standard, the organization shall be able to show that the results achieved correlate with the referenced standards. Where test methods are devised for testing items not covered in this standard, these shall be adequately documented including corresponding test limits. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements.
The test equipment selected shall be capable of making the measurements defined in the compliance verification plan.
”[ANSI/ESD clause 7.4 Compliance verification plan]

We provide detailed instructions on how to create a Compliance Verification Plan in this post.

4. Improperly Re-Using Shielding Bags / Using Shielding Bags with Holes or Scratches

ESD Shielding Bags are used to store and transport ESD sensitive items. When used properly, they create a Faraday Cage effect which causes charges to be conducted around the outside surface. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’. However, if the shielding layer of an ESD Shielding Bag is damaged, ESD sensitive items on the inside will not be protected anymore.

Step3 Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

Use a system of labels to identify when the bag has gone through five (5) handling cycles. When there are five broken labels, the bag is discarded.

Step2 ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.

Transportation of ESDS items outside an ESD Protected Area (hereafter referred to as “EPA”) requires enclosure in static protective materials, although the type of material depends on the situation and destination. Inside an EPA, low charging and static dissipative materials may provide adequate protection. Outside an EPA, low charging and static discharge shielding materials are recommended. While these materials are not discussed in

the document, it is important to recognize the differences in their application. For more clarification see ANSI/ESD S541.

[ANSI/ESD Foreword]

This post provides further “dos and don’ts” when using ESD Shielding Bags.

5. Using Household Cleaners on ESD Matting

The use of standard household cleaners on ESD matting can put an ESD Control Program at risk and damage the ESD properties of items. Many household cleaners contain silicone or other insulative contaminants which create that lovely shine you get when wiping surfaces in your home. The problem is that silicone and other chemical contaminates can create an insulative layer which reduces the grounding performance of the mat.

Step3 Don’t spend all this extra money on ESD matting and then coat it with an insulative layer by using household cleaners. There are many specially formulated ESD surface and mat cleaners available on the market. Only clean your ESD working surfaces using those cleaners.
Step2 “Periodic cleaning, following the manufacturer’s recommendations, is required to maintain proper electrical function of all work surfaces. Ensure that the cleaning products used to not leave an electrically insulative residue which is common with some household cleaners that contain silicone.”

[ESD TR20.20 Handbook Worksurfaces clause 10.5 Maintenance]

Conclusion

There are many more issues we see when setting foot into EPAs and the above list is by no means complete. These are the most common issues we’ve found when assessing EPAs.

It is important to train all personnel using ESD products and/or equipment to follow proper ESD control programs, and maintenance procedures to avoid common ESD control mistakes. Basic ESD control principles should be followed for an ESD control program to be successful:

  • Ground conductors.
  • Remove, convert or neutralize insulators with ionizers.
  • Shield ESD sensitive items when stored or transported outside the EPA.

What mistakes do you commonly see when walking through an EPA? Let us know what you commonly see in the comments and your solutions for fixing them!

For more information on how to get your ESD control program off the ground and create an EPA, check this post.

Best Storage Conditions for PCBs, and 5-Steps to Create a Dry Package

ElectroStatic Discharge (ESD) can pose danger to a Printed Circuit Board (PCB). A standard bare PCB (meaning that it has no semiconductor components installed) should not be susceptible to ESD damage, however as soon as you add electronic (semiconductor) devices, it becomes susceptible according to each of the individual’s susceptibility.

While ESD damage can post a danger, there is another risk factor many operators forget: moisture.

Today’s blog post is going to address both risks and will explain how you can protect your PCBs from both when storing them.

The problem with moisture

If you have been following along with our blogs, you will be well aware of the problems ESD damage can cause.

Moisture, on the other hand, may be a new issue to you. Surface Mounted Devices (SMDs), for example, absorb moisture and then during solder re-flow operations, the rapid rise in temperature causes the moisture to expand and the delaminating of internal package interfaces, also known as “pop corning.” The result is either a circuit board assembly that will fail testing or can prematurely fail in the field.

Moisture.png
Moisture from air diffuses inside the plastic body & collects in spaces between body & circuit, lead frame and wires. Expanding vapor can crack (popcorn) the plastic body or cause delamination.

Storing PCBs

All PCBs should be stored in a moisture barrier bag (MBB) that is vacuum sealed. In addition to the bags, Desiccant Packs and Humidity Indicator Cards must be used for proper moisture protection. This ‘package’ is also known as a dry package.

Most manufacturers of the Moisture Sensitive Devices (MSD) will dictate how their product should be stored, shipped, etc. However, the IPC/JEDEC J-STD-033B standard describes the standardized levels of floor life exposure for moisture/reflow-sensitive SMD packages along with the handling, packing and shipping requirements necessary to avoid moisture/reflow-related failures.

The ESD Handbook ESD TR20.20 mentions the importance of moisture barrier bags in section 5.4.3.2.2 Temperature: “While only specialized materials and structures can control the interior temperature of a package, it is important to take possible temperature exposure into account when shipping electronic parts. It is particularly important to consider what happens to the interior of a package if the environment has high humidity. If the temperature varies across the dew point of the established interior environment of the package, condensation may occur. The interior of a package should either contain desiccant or the air should be evacuated from the package during the sealing process. The package itself should have a low WVTR.

Components of a dry package

A dry package has four parts:

  1. Moisture Barrier Bag (MBB)
  2. Desiccant
  3. Humidity Indicator Card (HIC)
  4. Moisture Sensitive Label (MSL)

 

 3371014.jpg Moisture Barrier Bags (MBB) work by enclosing a device with a metal or plastic shield that keep moisture vapor from getting inside the bag. They have specialized layers of film that control the Moisture Vapor Transfer Rate (MVTR). The bag also provides static shielding protection.
Desiccant is a drying agent which is packaged inside a porous pouch so that the moisture can get through the pouch and be absorb by the desiccant. Desiccant absorbs moisture vapor (humidity) from the air left inside the barrier bag after it has been sealed. Moisture that penetrates the bag will also be absorbed. Desiccant remains dry to the touch even when it is fully saturated with moisture vapor.

The recommended amount of desiccant  depends on the interior surface area of the bag to be used. Use this desiccant calculator to determine the minimum amounts of desiccant to be used with Moisture Barrier Bags.

1-6PLDES1200.jpg
3HIC125.jpg Humidity Indicator Cards (HICs) are printed with moisture sensitive spots which respond to various levels of humidity with a visible color change from blue to pink. The humidity inside barrier bags can be monitored by the HIC inside. Examining the card when you open the bag will indicate the humidity level the components are experiencing so the user can determine if baking the devices is required.
The Moisture Sensitive Level (MSL) label tells you how long the devices can stay outside the bag before they should be soldered onto the board. This label is applied to the outside of the bag. If the “level” box is blank, look on the barcode label nearby. 113LABEL.jpg

5 Steps to Create a Dry Package

Now that we know the risks moisture poses to ESD components, follow these 5 steps to create a secure, dry package which will protect your PCBs against ElectroStatic Discharge and moisture:

  1. Place the desiccant and HIC onto the tray stack. Trays carry the devices. Remember to store desiccant in an air tight container until it used.
    Dry-Packaging-Step1.png
  1. Place the MSL label on the bag and note the proper level on the label.
    Dry-Packaging-Step2.png
  2. Place the tray stack (with desiccant and HIC) into the moisture barrier bag.
    Dry-Packaging-Step3.png
  3. Using a vacuum sealer, remove some of the air from the bag, and heat seal the bag closed. It is not good to take all the air out of the bag. Only slight evaluation is needed to allow the bag to fit inside a box.
    Dry-Packaging-Step4.png
  4. Now your devices are safe from moisture and static.
    Dry-Packaging-Step5.png

With the steps taken above, your package should now be properly sealed from moisture and protected from ElectroStatic discharge.

Looking for a moisture barrier bag for your application? See the SCS Moisture Barrier Bag Selection Guide to find the packaging that fits your specifications!

How to Neutralize a Charge on an Object that Cannot be Grounded

We have learned in a previous post that within an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential. We achieve this by using only ‘groundable’ materials.

But what do you do if an item in your EPA is essential to assembly and it cannot be grounded? Don’t sweat, not all hope is lost! Let us explain a couple of options which will allow you to use the non-groundable item in question.

Conductors and Insulators

In ESD Control, we differentiate items as conductors and insulators.

Materials that easily transfer electrons are called conductors. Examples of conductors are metals, carbon and the human body’s sweat layer.

Grounding cable snap with connection to a ground.
A charged conductor can transfer electrons which allows it to be grounded

Insulators are materials that do not easily transfer electrons are non-conductors by definition. Some well-known insulators are common plastics, polystyrene foam, and glass.

Plastic cup with charged electrons
Insulators like this plastic cup will hold the charge and cannot be grounded and “conduct” the charge away.

Both, conductors and insulators, may become charged with static electricity and discharge.

Electrostatic charges can effectively be removed from conductive or dissipative conductors by grounding them. A non-conductive insulator will hold the electron charge and cannot be grounded and “conduct” the charge away.

Conductors and Insulators in an EPA

The first two fundamental principles of ESD Control are:

  1. Ground all conductors (including people).
  2. Remove all insulators.

To ground all conductors per the first ESD Control principal, all surfaces, products and people are electrically bonded to ground. Bonding means linking or connecting, usually through a resistance of between 1 and 10 megohms.

Wrist straps and worksurface mats are some of the most common devices used to remove static charges:

  • Wrist straps drain charges from operators and a properly grounded mat will provide path-to-ground for exposed ESD susceptible devices.
  • Movable items (such as containers and tools) are bonded by standing on a bonded surface or being held by a bonded person.

If the static charge in question is on something that cannot be grounded, i.e. an insulator, then #2 of our ESD Control principles will kick in and insulators must be removed. Per the ESD Standard ANSI/ESD S20.20, “All nonessential insulators such as coffee cups, food wrappers and personal items shall be removed from the EPA.” [ANSI/ESD S20.20 clause 8.3.1 Insulators]

The ESD Standard differentiates between these two options:

  1. If the field measured on the insulator is greater than 2000 volts/inch, keep it at a minimum distance of 12 inches from the ESDs or
  2. If the field measured on the insulator is greater than 125 volts/inch, keep it at a minimum distance of 1 inch from the ESDs.

Moving an insulated keyboard away from ESD sensitive workspace
Aim to keep insulators away from ESDs

“Process-Essential” Insulators

Well, nothing in life is black and white. It would be easy if we were always able to follow the above ESD Control ‘rules’ but there are situations where said insulator is an item used at the workstation, e.g. hand tools. They are “process-essential” insulators – you cannot remove them from the EPA or the job won’t get done.

How do you ‘remove’ these vital insulators without actually ‘removing’ them from your EPA?

Here are four ways to reduce the ESD risk of these insulators:

  1. Keep all insulators a minimum of 1 inch or 12 inches from ESDs at all times per recommendation of the ESD Standard.
    This reduces the chance of insulators coming in contact with ESDs during workstation processes and assembly.
  2. Replace regular insulative items with an ESD protective version.
    There are numerous tools and accessories available that are ESD safe – from document handling to cups & dispensers, soldering tools, brushes and waste bins. They are either conductive or dissipative and replace the standard insulative varieties that are generally used at a workbench.
  3. Periodically apply Topical Antistat on non-ESD surfaces.
    After Topical Antistat has been applied and the surface dries, an antistatic and protective static dissipative coating is left behind. The static dissipative coating will allow charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts. It therefore gives non-ESD surfaces electrical properties until the hard coat is worn away.
  4. Neutralization with Ionization
    If these three options are not feasible for your application, the insulator is termed “process-essential” and therefore neutralization using an ionizer becomes a necessary part of your ESD control program. This allows for control of charged particles that can cause ESD events which we will cover next.

Neutralization

Most ESD workstations will have some insulators or isolated conductors that cannot be removed or replaced. These should be addressed with ionization.

Examples of some common process essential insulators are a PC board substrate, insulative test fixtures and product plastic housings.

Electronic enclosures are process-essential insulators (shown on ESD workstation)
Electronic enclosures are process-essential insulators

An example of isolated conductors are conductive traces or components loaded on a PC board that is not in contact with the ESD worksurface.

An ionizer creates great numbers of positively and negatively charged ions. Fans help the ions flow over the work area. Ionization can neutralize static charges on an insulator in a matter of seconds, thereby reducing their potential to cause ESD damage.

The charged ions created by an ionizer will:

  • neutralize charges on process required insulators,
  • neutralize charges on non- essential insulators,
  • neutralize isolated conductors and
  • minimize triboelectric charging.

SCS Benchtop ionizer on a workstation removing charges from isolated conductors on PCB Board
Insulators and isolated conductors are common in ESDs – Ionizers can help

For more information on ionizers and how to choose the right type of ionizer for your application, read this post.

Summary

The best way to keep electrostatic sensitive devices (ESDs) from damage is to ground all conductive objects and remove insulators. This is not always possible because some insulators are “process-essential” and are necessary to build or assemble the ESDs.

Insulators, by definition, are non-conductors and therefore cannot be grounded, but they can be controlled to minimize potential ESD damage.

Insulators can be controlled by doing the following within an EPA:

  • Keep insulators a minimum distance from ESDS at all times (1 or 12 inch minimum distance depending on field voltage measurements of the insulator per ESD Standard recommendation)
  • Replace regular insulative items with ESD protective versions
  • Periodically apply a coat of Topical Antistat
  • Neutralize charges for “process-essential” insulators with ionization

With these steps added to your ESD control process, all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential in an ESD Protected Area (EPA) to reduce the risk of ESD events and ESD damage.

How to Reduce the Risk of Damaging ESD Sensitive Devices in Critical Applications

Do your employees handle ESD-sensitive high-end components that are expensive to replace if they failed? If so, reducing the possibility of ESD damage is an important part of an ESD control program. Today’s blog post will look at one option of protecting your critical applications: Dual-Wire Wrist Straps.

Introduction

In an ESD Protected Area (EPA), all surfaces, objects, people and ESD sensitive devices (ESDs) are kept at the same electric potential. This is achieved by using only ‘groundable’ materials that are then linked to ground.

This is in line with the requirements of ANSI/ESD S20.20: “The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
– Training
– Product Qualification
– Compliance Verification
– Grounding / Equipotential Bonding Systems
– Personnel Grounding
– ESD Protected Area (EPA) Requirements
– Packaging Systems
– Marking

[ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

Wrist Straps

Wrist straps are the most common personnel grounding device and are used to link people to ground. They are required if the operator is sitting.

A wrist strap is made up of two components:

  • A wrist band that is worn comfortably around your wrist and
  • A coiled cord that connects the band to a Common Grounding Point.

wristbandComponents of a Wrist Strap 

Dual-Wire Wrist Straps

Dual-Wire Wrist Straps have two conductors (compared to single-wire monitors which have only one conductor inside the insulation of the coiled cord). They offer a reduced risk of damaging ESD sensitive devices because if one conductor is severed or damaged, the operator still has a reliable path-to-ground with the second conductor. For that reason, they dual-wire wrist straps are generally used in critical applications.

Advantages of using Dual-Wire Wrist Straps:

  • Elimination of intermittent failures
  • Extension of wrist strap lifespan
  • Compatible with high performance continuous monitors

 2231
The MagSnap 360™ Dual-Wire Wrist Strap and Coil Cord –
more information

Dual-Wire Continuous Monitors

For maximum benefit, dual-wire wrist straps should be used together with dual-wire continuous monitors. Instead of connecting a coil cord directly to a common grounding point, the operator connects to a continuous monitor. The operator is grounded through the continuous monitor and the operator-to-ground connection is monitored.

The monitors provide operators with instant feedback on the status and functionality of their wrist strap and/or workstation. Continuous monitors detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components. The “intermittent” stage is characterized by sporadic failures as the cord is not completely severed. Once the cord is fully split, the “open” stage is reached.

WS-Aware-UseThe WS Aware Dual-Wire Workstation Monitor – more information


Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.” “Wrist strap checkers are usually placed in a central location for all to use.  Wrist straps are stressed and flexed to their limits at a workstation.  While a wrist strap is being checked, it is not stressed, as it would be under working conditions.  Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Resistance (or dual-wire) constant monitors are “… used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire.  If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC.  Pulsed DC signals were developed because of concerns about skin irritation.  However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Conclusion

Dual Polarity Technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications redundancy is built-in to have a backup if the primary source fails. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap still needs to be replaced immediately.

And there you have it: dual-wire wrist straps together with dual-wire continuous monitors offer better protection than intermittent monitoring or testing if you have a critical application.

Check-out the SCS Wrist Strap Selection Guide and Workstation Monitor Selection Guide to find the correct products for your application.

An Introduction to Wrist Straps

We get a lot of inquiries regarding wrist straps: what they do, why there are different types, how they are used, etc. So, the purpose of today’s blog post is to answer all those questions for you. If there is something we did not cover in the blog post make sure you ask us in the comments!
Let’s get started!

Introduction
The ESD Standard S20.20 requires “an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:

  • Training
  • Product Qualification
  • Compliance Verification
  • Grounding/Equipotential Bonding Systems
  • Personnel Grounding
  • ESD Protected Area (EPA) Requirements
  • Packaging Systems
  • Marking”
    [ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

The most common personnel grounding device is a wrist strap which is used to connect people to ground.
A wrist strap in general is a conductive wristband which provides an electrical connection to skin of an operator and, in turn, is connected to a known ground point at a workbench or a tool. While a wrist strap does not prevent generation of charges, its purpose is to dissipate these charges to ground as quickly as possible. Wrist straps are required if the operator is sitting. They are not necessary if an operator is wearing two foot grounders on a conductive grounded floor and doesn’t lift both heels/toes at the same time. As some people lift both feet off the ground while seated, wrist straps are essential for sitting personnel.
A wrist strap is made up of two components:

  • a wristband that is worn comfortably around your wrist and
  • a coil cord that connects the band to ground.

Wristband and coil cord of a wrist strapWristband and coil cord of a wrist strap

The key to the wrist strap is the intimate contact of the conductive band to the skin and of course the coil cord connecting to ground. It doesn’t matter if the contact point to your body is on your wrist, finger, forearm, ankle, etc., as long as it is in direct contact with your skin. The skin is electrically continuous over your whole body. The wrist is just a convenient place to couple the band to.

Styles of Wrist Straps
Operators can choose between elastic and metal wristbands:

  • Elastic wristbands are the most popular wristband as they are comfortable to wear and easy to adjust. Compared to metal wristbands they are also less expensive.
  • Some people prefer metal wristbands as they are generally longer lasting and easier to clean.

The key to personnel grounding is to have an adequate path to ground so that there is never a potential difference with respect to ground on the human body for longer than 150 milliseconds (ms) body movement time. Such rapid grounding is accomplished well by elastic or metal wrist straps. So, in terms of their effectiveness to protect against ESD, there is no difference between elastic and metal wristbands.

Both elastic and metal wristbands are (to a certain degree) adjustable. Metal wristbands offer less adjustment, so you will find those are generally available in different sizes depending on the circumference of your wrist. However, you are still able to adjust metal wristbands if you need a tighter/looser fit.
To adjust your wristband, follow the below steps:
1. Elastic wristbands:

  • Open the clasp by pulling upward on the “tail” of material that extends out from the clasp.
  • Tighten or loosen the elastic material through the clasp until the wristband fits snug but comfortably.
  • We recommend that you close the clasp and wear the band with the excess tail extended for a day to be sure the adjustment is snug, comfortable, and has the proper electrical contact with the skin before cutting.
  • Test the wrist strap system to be sure of proper electrical resistance and skin contact.
  • When you are ready to cut off excess material, mark with a pencil where excess material is to be trimmed.
  • Remove band from wrist. Open clasp. Cut off strip excess material about 1/4″ short of pencil mark so that the end of material is concealed by cap. This will eliminate the possibility of frayed ends.
  • Close clasp and use as a fixed elastic wristband.

Adjusting an elastic wristbandAdjusting an elastic wristband

2. Metal wristbands:

  • Insert the link end of the wristband into the slotted opening on the cap. Insert it at a downward angle to allow the links to slide inside the channel in the backplate.
  • Change the size of the band by sliding the links in or out of the stainless steel backplate. For extra small size, you can cut off excess links with cutters.
  • Lock the links into place by pulling down on the band, seating the band securely over the lip on the edge of the backplate.
  • Test the wrist strap system to be sure of proper electrical resistance and skin contact.

Adjusting a metal wristbandAdjusting a metal wristband

1 megohm Safety Resistors
The purpose of the 1 megohm resistor found in series with wrist straps is solely to provide safety to the human body by limiting the amount of current that could be conducted through the body. The 1 megohm resistor is designed to limit the current to 250 microamps at 250 Volts rms AC. This is just below the perception level (and a bit before the nervous system goes awry) of most people. Physical perception of current traveling in/on the body varies depending on size, weight, water content, skin conditions, etc. Remember that the termination of the coil cord with the 1 megohm resistor must always be connected to the operator.
Such safety resistors are built into the wrist straps themselves and also in such wrist strap monitors as WS Aware, Iron Man® Plus and Ground Man Plus manufactured by SCS. 

Typical Problems with Wrist Straps
Some of the typical problems with proper grounding of an operator using a wrist strap are:

  • worn out wrist strap which no longer has good electrical properties
  • stretched out wrist strap which doesn’t make good electrical contact with the skin
  • loosely-worn wrist strap which doesn’t make good electrical contact with the skin either
  • dry skin of an operator increasing electric resistance of a contact beyond specification
  • improper placement of a wrist strap, such as over the cuff of the garment

Also, another issue we often see is that wrist strap users connect their wrist cord to a stud on their ESD protective mat. This process is not recommended as it can increase the total system resistance to ground to over the 35 megohm limit required by ANSI/ESD S20.20 table 2.

Testing of Wrist Straps
Wrist straps need to be checked regularly to ensure they are faultless and ground the operator properly. Wrist straps should be worn while they are tested. This provides the best way to test all three components: the wristband, the ground cord (including the resistor) and the interface with the operator’s skin.
Wrist straps need to be checked before each use. Periodic testing is not required if continuous monitors are used. They provide instant feedback should the wrist strap fail while handling ESD sensitive devices.

Verifying a wrist strap using a wrist strap/footwear testerVerifying a wrist strap using a wrist strap/footwear tester

If the wrist strap tester outputs a FAIL test result, stop working. Test the wristband and cord individually to find out which item is damaged. There are some methods to troubleshoot your wrist straps. First make sure your tester is properly adjusted and calibrated.

If the operator and wrist strap system fails low:

  • Make sure that the person is not directly connected to ground via another path, i.e., touching a grounded metal structure.
  • The most common cause of a fail low is a shorted resistor in the wrist strap coil cord. Replace the coiled cord with a new one and repeat the test.

If the operator and wrist strap system fails high:

  • Make sure the coiled cord has a secure connection both the banana jack/socket to tester and the stud snap to wrist strap buckle.
  • Ensure there is continuity in the coiled cord (you can test with an ohmmeter).
  • Remove the wrist strap and hold the bottom part of the band tightly between the operator’s thumb and index finger and test. If the test fails high, the band may be soiled and needs cleaning or the buckle to band connection may be suspect. Either replace the band or clean and then retest.
  • If the above test is okay, then the skin of the operator’s wrist may be too dry. Apply ESD lotion to the wrist to re-moisturize the skin thereby increasing its conductivity. Retest. Operators with dryer skin should wear metal banded wrist straps to minimize the contact resistance. If their skin is very dry, application of an ESD lotion may be required as part of their donning process.

You need to obtain a PASS test result before beginning work.

Now that we’ve covered the basics of wrist straps, we will dive into the different types of wrist straps – but that will have to wait until next time as this post is already very long. Stay tuned!

Conductors and Insulators

Good morning everyone – how is your Thursday going so far?
Over the next couple of posts, we’ll tackle another important aspect of any ESD Control Program: Ionization. But before we dig into the nitty gritty and explain the different types of ionizers, we’ll have to cover a bit of theory and discuss the different types of materials that can be found in an ESD Protected Area: conductors and insulators. But don’t worry – we’ll keep it brief!

Conductors
Materials that easily transfer electrons (or charge) are called conductors and are said to have “free” electrons. Some examples of conductors are metals, carbon and the human body’s sweat layer. Grounding works effectively to remove electrostatic charges from conductors to ground. However, the item grounded must be conductive.

The other term often used in ESD control is dissipative which is 1 x 104 to less than 1 x 1011 ohms and is sufficiently conductive to remove electrostatic charges when grounded.

When a conductor is charged, the ability to transfer electrons gives it the ability to be grounded.

 

Per ESD Handbook ESD TR20.20-2008 section 2.5 Material Electrical Characteristics – Insulative, Conductive and Static Dissipative: ” A conductive material allows electrons to flow easily across its surface. Conductive materials have low electrical resistance. If the charged conductive material makes contact with another conductive material, the electrons will transfer between the materials quite easily. If the second conductor is a wire lead to an earth grounding point, the electrons will flow to or from ground and the excess charge on the conductor will be “neutralized”. Static dissipative material will allow the transfer of charge to ground or to other conductive objects. The transfer of charge from a static dissipative material will generally take longer than from a conductive material of equivalent size.
There is no correlation between resistance measurements and the ability of a material to be low charging. Static dissipative material shall have a surface resistance of greater than or equal to 1.0 x 10^4 ohms but less than 1.0 x 10^11 ohms. Conductor less than 1.0 x 10^4, and non-Conductor or Insulator 1 x 10^11 ohms or higher.” [ANSI/ESD S541 section 7.2]

Take-away:

  • Electrical current flows easily in conductors.
  • Conductors can be grounded.

Insulators
Materials that do not easily transfer electrons are called insulators and are by definition non-conductors. Some well-known insulators are common plastics and glass. An insulator will hold the charge and cannot be grounded and “conduct” the charge away.

Both conductors and insulators may become charged with static electricity and discharge. Grounding is a very effective ESD control tool; however, only conductors (conductive or dissipative) can be grounded.

Insulators like this plastic cup will hold the charge and
cannot be grounded and “conduct” the charge away.

Per ESD Handbook ESD TR20.20-2008 section 2.5 Material Electrical Characteristics – Insulative, Conductive and Static Dissipative: “Virtually all materials, including water and dirt particles in the air, can be triboelectrically charged. An insulator is a material that prevents or limits the flow of electrons across or through its volume is called an insulator. A considerable amount of charge can be formed on the surface of an insulator.

Take-away:

  • Electrical current does not flow easily in insulators.
  • Insulators cannot be grounded.

Insulators are non-conductors and therefore cannot be grounded. Insulators can only be controlled by doing the following within an EPA:

  • Always keep insulators a minimum of 12 inch from ESDS items or
  • Replace regular insulative items with an ESD protective version or
  • Periodically apply a coat of topical Antistat.

All nonessential insulators such as coffee cups, food wrappers and personal items shall be removed from the workstation or any operation where unprotected ESDS items are handled.” [ANSI/ESD S20.20-2007 section 8.3]

“Process essential” Insulators
When none of the above is possible, the insulator is termed “process essential” and therefore neutralization using an ionizer should become a necessary part of the ESD control program.

Examples of some common process essential insulators are:

  • PC board substrate,
  • insulative test fixtures and
  • product plastic housings.

An example of isolated conductors can be conductive traces or components loaded on a PC board that is not in contact with the ESD worksurface.

Reduction of charges on insulators does occur naturally by a process called neutralization. Ions are charged particles that are normally present in the air and as opposite charges attract, charges will be neutralized over time.

A common example is a balloon rubbed against clothing and “stuck” on a wall by static charge. The balloon will eventually drop. After a day or so natural ions of the opposite charge that are in the air will be attracted to the balloon and will eventually neutralize the charge. An ionizer greatly speeds up this process.

A balloon “stuck” on a wall by static charge.

Ionizers and Neutralization
An ionizer creates great numbers of positively and negatively charged ions. Fans help the ions flow over the work area. Ionization can neutralize static charges on an insulator in a matter of seconds, thereby reducing their potential to cause ESD damage.

An ionizer creates positively and negatively charged ions.

Per ESD Handbook ESD TR20.20-2008 Ionization, section 5.3.6.1 Introduction and Purpose / General Information “The primary method of static charge control is direct connection to ground for conductors, static dissipative materials, and personnel. A complete static control program must also deal with isolated conductors that cannot be grounded, insulating materials (e.g. most common plastics), and moving personnel who cannot use wrist or heel straps or ESD control flooring or footwear. Air ionization is not a replacement for grounding methods. It is one component of a complete static control program. Ionizers are when it is not possible to properly ground everything and as backup to other static control methods.

Note: Ionizers require periodic cleaning of emitter pins and the offset voltage must be kept in balance. Otherwise, instead of neutralizing charges, if it is producing primarily positive or negative ions, the ionizer will place an electrostatic charge on items that are not grounded.

Summary
The 2nd of the three fundamental ESD Control principles is to neutralize process essential insulators with ionizers:
Per ANSI/ESD S20.20-2007 Foreword “The fundamental ESD control principles are:

  • All conductors in the environment, including personnel, must be attached to a known ground
  • Necessary non-conductors in the environment cannot lose their electrostatic charge by attachment to ground. Ionization systems provide neutralization of charges on these necessary non-conductive items (circuit board materials and some device packages are examples of necessary non-conductors).
  • Transportation of ESDS items outside of an ESD Protected Area requires enclosure in static protective materials… Outside an EPA, low charging and static discharge shielding materials are recommended.

In addition, if a conductor is not grounded, it is an isolated conductor, and an ionizer is the only means to neutralize ElectroStatic charges on it.

Now that you know what conductors and insulators are, how to treat them in an EPA and when to use ionization, the next step is to learn about the different types of ionizers available. Stay tuned for next time.

 

Creating a Compliance Verification Plan in 7 Steps

Every component in an ESD protected area (EPA) plays an important role in the fight against electrostatic discharge (ESD). Just one element not performing correctly could harm your ESD sensitive devices and potentially cost your company a lot of money. The problem with many ESD protection products is that you can’t always see the damage – think wrist straps! By just looking at a coiled cord, you can’t confirm it’s working correctly; even without any visible damage to the insulation, the conductor on the inside could be broken. This is where periodic verification comes into play.

Introduction
When implementing an ESD control program plan, ANSI/ESD S20.20 asks for several requirements to be addressed, one of which is “Compliance Verification”:
The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:

  • Training
  • Product Qualification
  • Compliance Verification
  • Grounding / Equipotential Bonding Systems
  • Personnel Grounding
  • ESD Protected Area (EPA) Requirements
  • Packaging Systems
  • Marking” [ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

ESD protected area (EPA) products should be tested:

  • Prior to installation to qualify product for listing in user’s ESD control program.
  • During the initial installation.
  • For periodic checks of installed products as part of TR20.20.

A Compliance Verification Plan shall be established to ensure the Organization’s fulfillment of the technical requirements of the ESD Control Program Plan. Process monitoring (measurements) shall be conducted in accordance with a Compliance Verification Plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The Compliance Verification Plan shall document the test methods and equipment used for process monitoring and measurements. If the test methods used by the organization differ from any of the standards referenced in this document, then there must be a tailoring statement that is documented as part of the ESD Control Program Plan. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements. The test equipment selected shall be capable of making the measurements defined in the Compliance Verification Plan.” [ANSI/ESD S20.20 clause 7.3 Compliance Verification Plan]

Components of a Verification Plan
Each company’s verification plan needs to contain:

1. A list of items that are used in the EPA and need to be checked on a regular basis
All ESD working surfaces, personnel grounding devices like wrist straps or foot grounders, ionizers etc. need to be included on the list. In summary: every item that is used for ESD Control purposes. It is recommended to create a checklist comprising all ESD control products as this will ensure EPAs are checked consistently at every audit.

2. A schedule specifying what intervals and how each item is checked
The test frequency will depend on several things, e.g.

  • how long the item will last,
  • how often it is used or
  • how important it is to the overall ESD control program.

As an example: wrist straps are chosen by most companies to ground their operators; they are the first line of defence against ESD damage. They are in constant use and are subjected to relentless bending and stretching. Therefore, they are generally checked at the beginning of each shift to ensure they are still working correctly and ESD sensitive items are protected. Ionisers on the other hand are recommended to be checked every 6 months: whilst they are in constant use, they are designed to be; the only actual ‘interaction’ with the user is turning the unit on/off. If, however, the ionizer is used in a critical clean room, the test frequency may need to be increased.

Testing-Wrist-Straps
It is recommended that Wrist Straps are checked before each shift

Testing and monitoring of smock and ground cord assembly

Test frequency limits are not listed in this document, as each user will need to develop their own set of test frequencies based on the critical nature of those ESD sensitive items handled and the risk of failure for the ESD protective equipment and materials.

Examples of how test frequencies are considered:

  • Daily wrist strap checks are sufficient in some applications while in other operations constant wrist strap monitoring may be used for added operator grounding reliability.
  • Packaging checks may depend on the composition of the packaging and its use. Some packaging may have static control properties that deteriorate more quickly with time and use, and some packaging may be humidity dependent and may have limited shelf life.
  • Some materials, such as ESD floor finishes, may require more frequent monitoring because of their lack of permanency. Other materials, such as ESD vinyl floor covering, may require less monitoring. The testing of a floor should also be considered after maintenance on the floor has been performed.” [ESD TR53-01-15 Annex A – Test Frequency]

The industry typically uses 2 types of verification to achieve maximum success: visual and measurement verification. As the name suggests, visual verification is used to ensure ESD working surfaces and operators are grounded, ESD flooring is in good shape or wrist straps are checked before handling ESD sensitive items.

Actual measurements are taken by trained personnel using specially designed equipment to verify proper performance of an ESD control item.

3. The suitable limits for every item used to control ESD damage
ANSI/ESD S20.20 contains recommendations of acceptable limits for every ESD control item. Following these references reduces the likelihood of 100V (HBM) sensitive devices being damaged by an ESD event.

Please bear in mind that there may be situations where the limits need to be adjusted to meet the company’s requirements.

4. The test methods used to ensure each ESD product meets the set limits
Tables 1 to 3 of ANSI/ESD S20.20 list the different test methods a company must follow.

If a company uses other test methods or have developed their own test methods, the ESD control program plan needs to include a statement explaining why referenced standards are not used. The company also needs to show their chosen test methods are suitable and reliable.

It is recommended that written procedures are created for the different test methods. It is the company’s responsibility to ensure anybody performing the tests understands the procedures and follows them accordingly.

5. The equipment used to take measurements specified in the test methods
Every company needs to acquire proper test equipment that complies with the individual test methods specified in Tables 1 to 3 of ANSI/ESD S20.20. Personnel performing measurements need to be trained on how equipment is used. ESD TR53-01-15 lists test procedures and equipment that can be used to verify ESD Control items.

SRMeter2_use
Checking an ESD Worksurface using a Surface Resistance Meter

6. A list of employees who will be performing the audits
Part of the verification plan is the choice of internal auditors. A few suggestions for the selection process:

  • Each individual is required to know the ESD Standard ANSI/ESD S20.20 AND the company’s individual ESD program.
  • It is essential that the selected team member recognizes the role of ESD control in the company’s overall quality management system.
  • It is recommended that each nominated worker has been trained on performing audits.
  • The designated employee should be familiar with the manufacturing process they are inspecting.

7. How to deal with non-compliance situations
Once an audit has been completed, it is important to keep everyone in the loop and report the findings to the management team. This is particularly vital if “out-of-compliance” issues were uncovered during the verification process. It is the responsibility of the ESD coordinator to categorize how severe each non-conformance is; key problems should be dealt with first and management should be notified immediately of significant non-compliance matters.

Results of audits (especially non-compliance findings) are generally presented using charts. Each chart should classify:

  • The total findings of the audit
  • The type of each finding
  • The area that was audited

It is important to note that each company should set targets for a given area and include a trend report. This data can assist in determining if employees follow the outlined ESD control program and if improvements can be seen over time.

3 Steps to Fight ESD

Happy Friday to everyone! Are you ready for another round of ESD updates? We’ve got a real gem for you today so let’s jump right in.
We’ve so far learned what ESD is and why ESD Protected Areas are so important. In today’s post, we want to arm you with 3 simple tactics to protect your ESD sensitive items. It’s easier than you think!

ESD Protection is a Requirement!
As electronic technology advances, electronic circuitry gets progressively smaller. As the size of components is reduced, so is the microscopic spacing of insulators and circuits within them, increasing their sensitivity to ESD. Industry experts estimate that average electronics product losses due to static discharge range from 8 to 33%. Others estimate the actual cost of ESD damage to the electronics industry as running into the billions of dollars annually. It is therefore critical to be aware of the most sensitive items being handled in your factory as the need for proper ESD protection increases every day.
Per ESD Handbook ESD TR20.20-2008 section 2.2: “Electronic items continued to become smaller, faster and their susceptibility to static damage increased…all electronic devices required some form of electrostatic control to assure continued operation and product reliability.”

Below you will find 3 simple tips to get ahead of the game.

1. Establish your ESD Protected Area
As a reminder, an ESD Protected Area (EPA) is a defined space within which all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same potential. That means:

  • All surfaces, products and people are linked to ground.
  • Moveable items, such as containers and tools, are bonded by standing on a grounded surface or being held by a grounded operator.
  • Everything that does not readily dissipate a charge must be excluded from the EPA.

In our last post we talked in detail about how to set-up an ESD Protected Area so if you’re unsure where to start, catch-up with the post here.

Remember that it’s just as important to mark your ESD Protected Area as it is to have it set-up correctly in the first place. If your EPA is not clearly identified, operators will not realize that special pre-cautions are required when entering. You really don’t want an unprotected person wandering over and touching things on the ESD workbench. All your hard work, time and money could be wasted. Make sure you use signs and tape to distinguish your EPA from the rest of your workshop.

Employee working at an ESD Protected Workstation
An employee working at an ESD Protected Workstation

Some take-away points for you:

  • The ESD Protected Area (EPA) should have signage to clearly identify where it is.
  • All conductors including personnel must be grounded. Operators must either wear wrist straps or footwear in combination with an ESD floor. ESD working surfaces (e.g. mats) are to be grounded.
  • Wristbands are to be worn snug; the grounding tab of foot grounders must be placed under the foot in the shoe; ESD smocks need to cover all clothing on the torso.
  • Wrist straps and footwear are to be tested daily. For wrist straps a continuous monitor can be used instead.
  • Remove all non-essential insulators or neutralize essential insulators with ionizers.
  • Use packaging with shielding properties to store or transport ESDS outside the EPA.
  • Only handle unpackaged ESDs in an EPA when grounded.
  • Periodic checks of installed products (e.g. ESD working surfaces, ESD flooring etc.) are required.
  • Only trained or escorted people are to be allowed in the EPA.

2. Determine your ESD sensitive items
It is critical to be aware of the most sensitive item being handled in your factory. As with any type of control, there are several levels of protection. The method for choosing the necessary degree of ESD protection starts with defining your static sensitivity for electronic components. The ESD Association defines different classes of sensitivity for the HBM (Human Body Model) and CDM (Charged Device Model).

ESDS Component Sensitivity Classification
ESDS Component Sensitivity Classification

How can you determine the class of sensitivity of the devices within your facility? Look at your product flow through your facility, start at receiving and walk the components or products through until they are at dispatch ready to ship. Chances are, you have several different product flows through your facility. Each flow or loop will have specific components that enter or travel the loop. Make a list of all the sensitive components in each loop and determine the static voltage sensitivity or rating from each of the manufacturers. The lowest voltage sensitivity will dictate the sensitivity class of each loop. The philosophy here is “the chain is only as strong as the weakest link”. Each loop should have the required ESD protection for the most sensitive components that will travel this loop. This will define what class of protection is needed for each loop. You can have different class loops as long as the loops are closed, not allowing other components in. The objective here is to define a static control program to safeguard your most sensitive component.

Per ESD Handbook ESD TR20.20-2008 section 4.1.1 Determining Part ESD Sensitivity “The first step in developing an ESD Control Program plan is to determine the part, assembly or equipment sensitivity level under which the plan is to be developed. The organization can use one of several methods to determine the ESD sensitivity of the products that are to be handled. Some of the various methods are: 1) Assumption that all ESD products have a HBM sensitivity of 100 volts; 2) Actual testing of products using accepted test methods.”
Any ESD sensitive item should be identified with the ESD sensitivity symbol, either on itself or its container. The ESD Sensitivity Symbol (also called Susceptibility or Warning Symbol) identifies items that can be damaged by ESD and should ONLY be unpackaged and handled while grounded at an ESD protected workstation.

3. Train, train train!
No, we’re not talking about railway cars here. What we are referring to is teaching your employees. “Initial and recurrent ESD awareness and prevention training shall be provided to all personnel who handle or otherwise come into contact with any ESDS [ESD sensitive] items. Initial training shall be provided before personnel handle ESDS items. The type and frequency of ESD training for personnel shall be defined in the Training Plan. The Training Plan shall include a requirement for maintaining employee training records and shall document where the records are stored. Training methods and the use of specific techniques are at the Organization’s discretion. The training plan shall include the methods used by the Organization to verify trainee comprehension and training adequacy.” [ANSI/ESD S20.20-2007 section 7.2]

Training is an essential part of an ESD Control Program
Training is an essential part of an ESD Control Program

Perhaps the most important factor in a successful static control program is developing an awareness of the “unseen” problem. People are often a major factor in the generation of static charges. Studies have shown that personnel in a manufacturing environment frequently develop 5000 volts or more just by walking across the floor. Again, this is “tribocharging” produced by the separation of their shoes and the flooring as they walk.
A technician seated at a non-ESD workbench could easily have a 400-500 volt charge on his or her body caused not only by friction or tribocharging but additionally by the constant change in body capacitance that occurs from natural movements. The simple act of lifting both feet off the floor can raise the measured voltage on a person as much as 500-1000 volts.
Educating your personnel is therefore an essential basic ingredient in any effective static control program. A high level of static awareness must be created and maintained in and around the protected area. Once personnel understand the potential problem, it might help to reinforce this understanding by hanging up a few static control posters in strategic locations. The technician doesn’t need an unprotected person wandering over and touching things on the service bench.

Introduction to ESD

Welcome to this little corner of the interwebs! Today marks the beginning of something truly amazing: our very own blog! You’re currently reading through our first blog post and we appreciate you taking time out of your busy life and spending it here.

The intention of this blog is to provide you with resources, information and tools – all focused around ESD! So, if you have any ideas for future blog posts or suggestions on what we could do better, don’t be a stranger and leave a comment! We look forward to hearing from you.

Now, for this first post we thought we’d start right at the beginning: what is ESD? It’s the core of our business but a lot of people don’t understand what it’s all about so let’s clear that up – right here and right now!

ElectroStatic Charge
Everything you see around you is made from atoms – your mouse, keyboard, screen, cup of coffee etc. Every atom is constructed of a nucleus, which includes positively charged protons, and one or more negatively charged electrons bound to the nucleus. As atoms have an equal number of electrons and protons, it balances out having no charge. No problems so far!

Structure of an AtomStructure of an Atom (Source)

Unfortunately, all materials can tribocharge and generate ElectroStatic charges. Most of the time this happens through contact and separation; some everyday life examples are:

  • Opening a plastic bag
  • Combing hair
  • Walking across a floor

Walking across a floor.pngWalking across a floor can generate an ElectoStatic Charge

For most people, static electricity is represented by the noise or crackle heard on a radio that interferes with good reception or the shock experienced when touching a metal object after walking across a carpeted room or sliding across a car seat. Static electricity is also observed as static cling when clothes are stuck together after coming out of a clothes dryer. Most of the time, people observe static electricity when the weather is cold and dry.” “While many people tend to think of static electricity as being at rest or not moving, static electricity causes the most concern when it ceases to be stationary.” [ESD Handbook ESD TR20.20 section 2.1 Basics of Static Electricity, Introduction]

When two materials make contact and are then separated, a transfer of electrons from one surface to the other may take place. The amount of static electricity generated depends upon the materials subjected to contact or separation, friction, the area of contact or separation, and the relative humidity of the environment. At lower relative humidity (as the environment is drier) charge generation will increase significantly. Common plastics generally will create the greatest static charges.
Electrostatic charge is most commonly formed by the contact and separation of two materials. The materials may be similar or dissimilar although dissimilar materials tend to liberate higher levels of static charge. An example is a person walking across the floor. Static electricity is produced when the person’s shoe soles make contact, then separate from the floor surface. Another example is an electronic device sliding into or out of a bag, magazine or tube.” [ESD Handbook ESD TR20.20 section 2.3 Nature of Static Electricity]

ElectroStatic Discharge (ESD)
If two items are at different ElectroStatic charge levels (i.e. one is positively and the other negatively charged) and approach one another, a spark or ElectroStatic Discharge (ESD) can occur. This rapid, spontaneous transfer of an ElectroStatic charge can generate heat and melt circuitry in electronic components.

ESD.png

ElectroStatic Discharge (ESD)

ESD events are happening around us all the time – yet, most of these cannot be seen or felt. For a person to sense ElectroStatic Discharge (ESD) (the dreaded ‘zap’), a discharge of about 2,000V is needed. To actually see ESD (in form of an arc, e.g. lightning) even greater voltages are required.

While ESD in your home can be annoying, it’s generally harmless. However, in the electronics industry ESD is the hidden enemy. Damages caused by invisible and undetectable ESD events can be understood by comparing ESD damage to medical contamination of the human body by viruses or bacteria. Although invisible, they can cause severe damage. In hospitals, the defense against this invisible threat is extensive contamination control procedures including sterilization. In the electronics industry, it’s ESD Protection; we will get into more detail on that in a later post.

Many of the common activities you perform daily may generate charges on your body that are potentially harmful to electronic components. Some of these activities include:

  • Walking across a carpet: 1,500V to 35,000V
  • Walking over untreated vinyl floor: 250V to 12,000V
  • Worker at a bench: 700V to 6,000V
  • Picking up a common plastic bag from a bench: 1,200V to 20,000V

Many of the CMOS technology components can be damaged by discharges of less than 1,000 volts. Some of the very sophisticated components can be damaged by charges as low as 10 volts.

Types of ESD Device Damage
So, we’ve established what ESD is and learned that ESD can damage electronics components. But what exactly does this damage look like? We’re so glad you asked!

The industry differentiates between catastrophic failures and latent defects. Per ESD Handbook ESD TR20.20 section 2.7 Device Damage – Types and Causes “Electrostatic damage to electronic devices can occur at any point, from the manufacture of the device to field service of systems. Damage results from handling the devices in uncontrolled surroundings or when poor ESD control practices are used. Generally damage can manifest itself as a catastrophic failure, parametric change or undetected parametric change (latent defect).

Catastrophic failures occur when a component is damaged to the point where it is DEAD NOW and will never again function. In these cases, the ESD event may have caused a metal melt, junction breakdown or oxide failure. This is the easiest type of ESD damage to find since it can be detected during inspection and testing.
When an electronic device is exposed to an ESD event it may no longer function. The ESD event may have caused a metal melt, junction breakdown, or oxide failure. The device’s circuitry is permanently damaged, resulting in a catastrophic failure.” [ESD Handbook ESD TR20.20 section 2.7.1 Catastrophic Failures]

Catastrophic Failures

Catastrophic failures will lead to completely failed or dead components.

Latent defects occur when ESD weakens or wounds the component to the point where it will still function properly during testing, but over time the wounded component may cause poor system performance. Later, after final inspection, perhaps in the hands of your customer, a latent defect may become a catastrophic failure.
A device that is exposed to an ESD event may be partially degraded, yet continue to perform its intended function. However, the operating life of the device may be reduced dramatically. A product or system incorporating devices with latent defects may experience a premature failure after the user places them in service. Such failures are usually costly to repair and in some applications may create personnel hazards.” It is easy with the proper equipment to confirm that a device has experienced catastrophic failure or that a part is degraded or fails test parameters. Basic performance tests will substantiate device damage. However, latent defects are virtually impossible to prove or detect using current technology, especially after the device is assembled into a finished product. Some studies claim that the number of devices shipped to users with latent defects exceeds the number that fail catastrophically due to ESD in manufacturing.” [ESD Handbook ESD TR20.20 section 2.7.2 Latent Defects]

Latent Defects

Latent defects lead to degraded or wounded components

Costly Effects of ESD
Catastrophic failures are straight forward: they can be detected and repaired at an early manufacturing stage. This is the least costly type of ESD damage.

Latent defects on the other hand are not only hard to find, but they can also severely affect the reputation of your company’s product. Latent defects can cause upset or intermittent failures and can be very frustrating: customers return a product with a problem which the factory fail to detect so it ends up at the customer’s again with the problem unresolved.

ESD Damage on an Integrated Circuit

The cost for repairing latent defects increases as detection of the failure moves through the system. One study indicated the repair cost to be:

  • $10 Device
  • $10 Device in board: $100
  • $10 Device in board and in system: $1,000
  • $10 Device and system fails: $10,000

Industry experts estimate that product losses in the electronics industry due to static discharge range from 8 to 33%. Others believe the actual cost of ESD damage amount to billions of dollars annually.

Conclusion
ESD is the hidden enemy in the electronics industry:

  • It cannot be felt
  • It cannot be seen
  • It cannot necessarily be detected through normal inspection procedures.

Therefore, it is absolutely crucial to be aware of the most sensitive items in your factory. Technology advances all the time: electronic circuitry gets progressively smaller which leads to a reduction of microscopic spacing of insulators and circuits within components. “Electronic items continued to become smaller, faster and their susceptibility to static damage increased…all electronic devices required some form of electrostatic control to assure continued operation and product reliability.” [ESD Handbook ESD TR20.20 section 2.2]. While this is great news for the consumer with better, faster and stronger computers, tablets, phones etc., it’s bad news for the manufacturers. The evolution of technology leads to devices being even more sensitive to ESD. As a result, the need for appropriate ESD Protection is now more important than ever.

Over the next few weeks, we will provide you with all the tips, tools and techniques to create an effective ESD Control Program so that your sensitive components are protected against damages from ESD.