ESD Worksurface

What You Should Know Before Using ESD Laminate and Continuous Monitors

There are all kinds of variations and combinations of ESD Laminate and Continuous Monitors used by companies with ESD Programs.. There are some key factors that you need to be aware of if you intend to use ESD Laminate together with a continuous monitor that will monitor the worksurface connections.

It’s important to note that continuous monitors don’t monitor the status/condition of the outer surface of an ESD workstation. The continuous monitor monitors the connection between groundable points on the worksurface (often snaps), not the Resistance to Ground (RTG) of the surface itself. The RTG measurement must be taken separately, per ANSI/ESD TR53-01-18 – Compliance Verification of ESD Protective Equipment and Materials (Pages 6 and 7).

The basic technology is that the monitor applies a low test voltage to the scrim layer in the worksurface. Because the test voltage is so low, the resistance of the scrim layer of the mat must also be low so that the test voltage can complete a circuit of the scrim layer, worksurface connections (snaps) and ground cords. Completing that circuit indicates that the worksurface is electrically connected. The goal is to have the worksurface circuit fail because of a bad connection, not because the scrim layer resistance was too high.  As mentioned earlier, testing the combination of the outer layer and the scrim layer together (RTG) is a separate test.

When choosing a continuous monitor and worksurface combination that will work together it is important to consider the following:

  • Does the worksurface have a separate scrim layer? (vs. a homogenous mat material)
  • Does the continuous monitor spec sheet note the resistance limit of the scrim layer required for the monitor/worksurface alarm system to pass?
    • See the excerpt below from the SCS 724 Continuous Monitor Technical Bulletin – https://www.descoindustries.com/PDF/724-Workstation-Monitor-User-Guide.pdf
      Red Worksurface LED (M) This indicates that a high resistance condition (> 3.7 Megohms) exists across the conductive layer of theworksurface and/or the ground connections. Check the worksurface, ground cords and their connections for continuity. Note the audible alarm may also sound if enabled.”

What this means is if the resistance of the mat scrim layer is greater than 3.7 Megohms then the continuous monitor mat alarm would alarm for a high resistance condition even if the grounding hardware connections to the worksurface were intact. There are other SCS monitors available that will monitor a scrim layer with a resistance as high as 5 x 108.

In summary, it’s critical to know both the upper limit of the “pass” condition of the continuous monitor and the construction of the worksurface material (does it have a scrim layer and if so what is the resistance of the scrim layer?)

ESD Laminate requires extra attention when being considered for use with a continuous monitor for the following reasons:

  • Laminate material is rigid, which makes it more difficult for grounding hardware to make a good contact with the scrim layer.
    • Consider abrading the outer, decorative surface to expose the scrim layer for better contact. Consider a flat bottom drill for this process.
  • Most importantly, perform a test on the resistance between two points on the worksurface to determine if the resistance meets the requirements of the specified monitor (for the SCS 724 that requirement is less than 3.7 Megohms – 3.7 x 106 ). We recommend using an ohm meter with a test voltage similar, if not identical to the test voltage used by the continuous monitor. We recommend performing this test before the purchase/installation of any number of continuous monitor/worksurface combinations.

A Minute with Miranda – Cleaning an ESD Worksurface Mat

Welcome back to “A Minute with Miranda.” This week we will be covering how to properly clean an ESD Worksurface Mat.

For optimum electrical performance, the ESD worksurface mat surface should be cleaned regularly using a recommended ESD mat cleaner. Per the ESD Handbook ESD TR20.20, “Ensure that cleaners that are used do not leave an electrically insulative residue common with some household cleaners.”
We recommend using Reztore ESD Surface and Mat Cleaner. Reztore is alcohol free and does not contain silicone or other substances that will leave an insulative residue or inhibit the performance of the ESD worksurface mats.

After cleaning the ESD worksurface mat with Reztore it is recommended to test the surface to ensure that all insulative contaminates such as dirt and grime have been removed from the mat.
SCS worksurface mats meet the ANSI/ESD STM4.1 and ANSI/ESD S20.20 required limit of 1 x 106 to less than 1 x 109 ohms for Rtt and Rtg and the recommendations of ANSI/ESD S4.1. View the range of Reztore Alcohol Free products here.

How to Create an ESD Protected Area at an Existing Workstation

When referring to an “ESD Protected Area” or “EPA”, a lot of people imagine rooms or even whole factory floors with numerous workstations. This very common misconception leads to nervousness and even fear when it comes to implementing an ESD Control Program. There is a concern regarding the cost and time implications when establishing an EPA. However, most often, a simple ESD workstation is completely sufficient to fulfill a company’s needs to protect their ESD sensitive products. Today’s post will provide a step-by-step guide on:

  • How to create an EPA at an existing workstation,
  • What ESD control products are required
  • How to correctly set up ESD control products

What is an “ESD Protected Area” or “EPA”?

An EPA is an area that has been established to effectively control Electrostatic Discharge (ESD) and its purpose is therefore to avoid all problems resulting from ESD damage, e.g. catastrophic failures or latent defects. It is a defined space within which all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential. This is achieved by simply using only ‘groundable’ materials for covering of surfaces and for the manufacture of containers and tools. All surfaces, products and people are grounded to Ground.

What is Grounding?

Grounding means linking, usually through a resistance of between 1 and 10 megohms. Movable items (such as containers and tools) are grounded by virtue of lying on a grounded surface or being held by a grounded person. Everything that does not readily dissipate a charge must be excluded from the EPA.

How big does an EPA need to be?

An EPA can be just one workstation, or it could be a room containing several different workstations. “The definition of an EPA depends somewhat on the user environment. An EPA may be a permanent workstation within a room or an entire factory floor encompassing thousands of workstations. An EPA may also be portable as used in a field service situation.” [Handbook ESD TR20.20-2016 Clause 9.0 ESD Protected Areas]

What is needed to convert a Workstation into an EPA?

Creating an EPA at an existing workstation does not need to be complicated or expensive. There are just a few things that are required:

Workstation-Setup.png

1. Wrist Strap

Wrist straps are the most common personnel grounding devices and are used to link people to ground. They are required if the operator is sitting. A wrist strap is made up of two components:

  • A wristband that is worn comfortably around the wrist and
  • A coiled cord that connects the band to Ground or a Wrist Strap Grounding System as explained in #4.

2. Wrist Strap Grounding System

These have been designed to be installed underneath bench tops where they are easily accessible to operators and where they are unlikely to be knocked and damaged or hinder the operator. The grounding cord of the Grounding System needs to be connected to a suitable Ground.

3.Worksurface Mat

ESD protective worksurfaces aid in the prevention of damage to ESD sensitive items (ESDS) and assemblies from electrostatic discharge.

ESD worksurfaces, such as mats, are typically an integral part of the ESD workstation, particularly in areas where hand assembly occurs. The purpose of the ESD worksurface is two-fold:

  • To provide a surface with little to no charge on it.
  • To provide a surface that will remove ElectroStatic charges from conductors (including ESDs) that are placed on the surface.

4. Worksurface Mat Grounding Cord

An ESD worksurface needs to be grounded using a ground cord. A ground wire from the surface should connect to Ground. Best practice is that ground connections use firm fitting connecting devices such as metallic crimps, snaps and banana plugs to connect to designated ground points. The use of alligator clips is not recommended.

Where sitting personnel will be grounded via a wrist strap, this method is not feasible for operators moving around in an ESD Protected Area. In those situations, a flooring / footwear system is required.

5. Foot Grounders

Foot grounders are designed to reliably contact grounded ESD flooring and provide a continuous path-to-ground by removing electrostatic charges from personnel. They are easy to install and can be used on standard shoes by placing the grounding tab in the shoe under the foot.

Foot grounders must be worn on both feet to maintain the integrity of the body-to-ground connection Wearing a foot grounder on each foot ensures contact with Ground via the ESD floor even when one foot is lifted off the floor.

6. Floor Mat

Floor matting is an essential component in the flooring / footwear system when grounding moving or standing personnel. The path to Ground from operators via heel grounders to Ground is maintained by using dissipative or conductive flooring.

Floor mats don’t just ground personnel; they are also used to ground ESD control items (e.g. mobile carts or workstations).

7. Floor Mat Grounding Cord

Just like worksurface matting, floor matting needs to be connected to Ground. This ensures that any charges on the operator are dissipated through their heel grounders and the floor matting to Ground. A floor mat grounding cord is used to link the floor mat to Ground.

Alternatively, matting can be grounded via a strip of copper foil.

 

Installing an ESD Workstation

To install the ESD workstation, it is necessary to ground the worksurface and operator with the following steps:

1. Working-Surface-Mat.png Lay the worksurface mat flat on the workbench with the stud(s) facing upwards.
2. Working-Surface-Mat-Grounding-Cord.png Connect the worksurface mat grounding cord to the worksurface mat.
3. Wrist-Strap-Ground.png Connect the other end of the worksurface mat grounding cord to Ground.
4. Wristband.png Place the wristband on the wrist.
5. Coiled-Cord.png Connect the coiled cord to the wristband.
6. Grounding-System.png Attach the Wrist Strap Grounding System to the bench. Remember that it needs to be connected to a suitable Ground.
7. Wrist-Strap-Grounding-System.png Connect the other end of the coiled cord to the Wrist Strap Grounding System and verify personnel is properly grounded.

If your operators are standing or mobile and grounding via a wrist strap is not feasible, ground the worksurface, and the ESD flooring:

1. Working-Surface-Mat-Grounding-Cord.png Ground the worksurface mat by following steps #1 to #4 above
2. Floor-Mat.png Lay the floor mat flat on the floor with the stud(s) facing upwards.
3. Floor-Mat-Grounding-Cord.png Connect the floor mat grounding cord to the floor mat.
4. Wrist-Strap-Ground.png Connect the other end of the floor mat grounding cord to Ground.
5. Foot-Grounders.png Place the foot grounders on the feet and verify personnel is properly grounded.

 

Conclusion

An EPA can be created at an existing workstation in a facility. To establish an EPA it is important to:

  • Ground all conductors (including people),
  • Remove all insulators (or substituting with ESD protective versions) or
  • Neutralize process essential insulators with an ionizer.

With a few simple steps, you can convert your existing workstation into an ESD workstation. You will need:

  • Worksurface Mat
  • Worksurface Mat Grounding Cord
  • Wrist Strap
  • Wrist Strap Grounding System

Optional:

  • Foot Grounders
  • Floor Mat
  • Floor Mat Grounding Cord

We hope this article has introduced the basics of an ESD Protected Area (EPA), and the steps needed to create an ESD Workstation.

For more information on how to get your ESD control program off the ground, Request a free ESD/EOS Assessment at your facility by one of our knowledgeable local representatives to evaluate your ESD program and answer any ESD questions!

5 Common Mistakes in ESD Control & How to Avoid Them

Many companies implement an ElectroStatic Discharge (ESD) Control Program with the aim of improving their operations. Effective ESD control can be a key to improving:

  • Productivity
  • Quality
  • Customer Satisfaction

Problems arise when an organization invests in ESD protective products and/or equipment and then misuses them. Misuse of ESD protective products and/or equipment wastes invested money and can also be causing more harm than good. Today’s blog post will highlight some of the major issues we have come across and how you can avoid or fix them.

About ESD Control and ESD Protection

Remember that for a successful ESD control program, ESD protection is required throughout the manufacturing process: from goods-in to assembly all the way through to inspection. Anybody who handles electrical or electronic parts, assemblies or equipment that are susceptible to damage by electrostatic discharges should take necessary precautions.

Just like viruses or bacteria that can infect the human body, ESD can be a hidden threat unable to be detected by human eyes. Hidden viral/bacterial threats in hospitals are controlled by extensive contamination control procedures and protective measures such as sterilization. The same principles apply to ESD control: you should never handle, assemble or repair electronic assemblies without taking adequate protective measures against ESD.

Common Mistakes in ESD Control

1. Ionizers are poorly maintained or out-of-balance

If an ionizer is out of balance, instead of neutralizing charges, it will produce primarily positive or negative ions. This results in placing an electrostatic charge on items that are not grounded, potentially discharging and causing ESD damage to nearby sensitive items.

Step3 Remember to clean emitter pins and filters using appropriate tools. Create a regular maintenance schedule which will extend the lifespan of your ionizers tremendously.

Consider using ionizers with “Clean Me” and//or “Balance” alarms. These will alert you when maintenance is required.

Step2.png All ionization devices will require periodic maintenance for proper operation. Maintenance intervals for ionizers vary widely depending on the type of ionization equipment and use environment. Critical clean room use will generally require more frequent attention. It is important to set up a routine schedule for ionizer service.”

[ESD TR20.20 Handbook Ionization clause 15.8 Maintenance / Cleaning]

If you would like to learn more about how ionizers work and what type of ionizer will work best for your application, check out this post for detailed coverage.

2. ESD Garments are Ungrounded

We’ve seen it so many times: operators wearing an ESD coat (without appropriate wrist straps and/or footwear/flooring) thinking they are properly grounded. However, without proper electrical bonds to a grounding system they are not grounded!

Step3 Every ESD garment needs to be electrically bonded to the grounding system of the wearer. Otherwise it just acts as a floating conductor. There are a few options to choose from:

  • Wrist Straps
  • ESD footwear/flooring
  • Hip-to-Cuff grounding
Step2 After verifying that the garment has electrical conductivity through all panels, the garment should be electrically bonded to the grounding system of the wearer so as not to act as a floating conductor.

This can be accomplished by several means:

  1. Ground the garment to the body through a wrist strap-direct connection with an adapter.
  2. Ground the garment through conductive wrist or heel cuffs in direct contact with the skin of a grounded operator.
  3. Ground the garment through a typical separate ground cord, directly attached to an identified groundable point on the garment.
  4. Garments should be worn with the front properly snapped or buttoned to avoid exposure of possible charge on personal clothing worn under the garment.

[ESD TR20.20 Handbook Garments clause 19.4 Proper Use]

ESD clothing loses their ESD properties over time. It is therefore an important part of the ESD Control Program to incorporate periodic checks (see #3 below) of ESD garments.

If you need more information on ESD garments, we recommend having a look at this post.

3. No Compliance Verification Plan / Not Checking ESD Control Products

Companies can invest thousands of dollars in purchasing and installing ESD control products but then waste their investment by never checking their ESD items. This results in ESD equipment that is out of specification. Without the tools in place to check their ESD items, companies may have no idea if they are actually working correctly. Remember: ESD products (like any other product) are subject to wear and tear, and other errors when workstations get moved, ground cords get disconnected…etc. The list goes on.

Step3 When investing in ESD control products, make sure you also establish a Compliance Verification Plan. This ensures that:

  • ESD equipment is checked periodically
  • Necessary test equipment is available
Step2 A compliance verification plan shall be established to ensure the organization’s fulfilment of the requirements of the plan. Process monitoring (measurements) shall be conducted in accordance with a compliance verification plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The compliance verification plan shall document the test methods used for process monitoring and measurements. If the organization uses different test methods to replace those of this standard, the organization shall be able to show that the results achieved correlate with the referenced standards. Where test methods are devised for testing items not covered in this standard, these shall be adequately documented including corresponding test limits. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements.
The test equipment selected shall be capable of making the measurements defined in the compliance verification plan.
”[ANSI/ESD clause 7.4 Compliance verification plan]

We provide detailed instructions on how to create a Compliance Verification Plan in this post.

4. Improperly Re-Using Shielding Bags / Using Shielding Bags with Holes or Scratches

ESD Shielding Bags are used to store and transport ESD sensitive items. When used properly, they create a Faraday Cage effect which causes charges to be conducted around the outside surface. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’. However, if the shielding layer of an ESD Shielding Bag is damaged, ESD sensitive items on the inside will not be protected anymore.

Step3 Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

Use a system of labels to identify when the bag has gone through five (5) handling cycles. When there are five broken labels, the bag is discarded.

Step2 ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.

Transportation of ESDS items outside an ESD Protected Area (hereafter referred to as “EPA”) requires enclosure in static protective materials, although the type of material depends on the situation and destination. Inside an EPA, low charging and static dissipative materials may provide adequate protection. Outside an EPA, low charging and static discharge shielding materials are recommended. While these materials are not discussed in

the document, it is important to recognize the differences in their application. For more clarification see ANSI/ESD S541.

[ANSI/ESD Foreword]

This post provides further “dos and don’ts” when using ESD Shielding Bags.

5. Using Household Cleaners on ESD Matting

The use of standard household cleaners on ESD matting can put an ESD Control Program at risk and damage the ESD properties of items. Many household cleaners contain silicone or other insulative contaminants which create that lovely shine you get when wiping surfaces in your home. The problem is that silicone and other chemical contaminates can create an insulative layer which reduces the grounding performance of the mat.

Step3 Don’t spend all this extra money on ESD matting and then coat it with an insulative layer by using household cleaners. There are many specially formulated ESD surface and mat cleaners available on the market. Only clean your ESD working surfaces using those cleaners.
Step2 “Periodic cleaning, following the manufacturer’s recommendations, is required to maintain proper electrical function of all work surfaces. Ensure that the cleaning products used to not leave an electrically insulative residue which is common with some household cleaners that contain silicone.”

[ESD TR20.20 Handbook Worksurfaces clause 10.5 Maintenance]

Conclusion

There are many more issues we see when setting foot into EPAs and the above list is by no means complete. These are the most common issues we’ve found when assessing EPAs.

It is important to train all personnel using ESD products and/or equipment to follow proper ESD control programs, and maintenance procedures to avoid common ESD control mistakes. Basic ESD control principles should be followed for an ESD control program to be successful:

  • Ground conductors.
  • Remove, convert or neutralize insulators with ionizers.
  • Shield ESD sensitive items when stored or transported outside the EPA.

What mistakes do you commonly see when walking through an EPA? Let us know what you commonly see in the comments and your solutions for fixing them!

For more information on how to get your ESD control program off the ground and create an EPA, check this post.

Conductors and Insulators

Good morning everyone – how is your Thursday going so far?
Over the next couple of posts, we’ll tackle another important aspect of any ESD Control Program: Ionization. But before we dig into the nitty gritty and explain the different types of ionizers, we’ll have to cover a bit of theory and discuss the different types of materials that can be found in an ESD Protected Area: conductors and insulators. But don’t worry – we’ll keep it brief!

Conductors
Materials that easily transfer electrons (or charge) are called conductors and are said to have “free” electrons. Some examples of conductors are metals, carbon and the human body’s sweat layer. Grounding works effectively to remove electrostatic charges from conductors to ground. However, the item grounded must be conductive.

The other term often used in ESD control is dissipative which is 1 x 104 to less than 1 x 1011 ohms and is sufficiently conductive to remove electrostatic charges when grounded.

When a conductor is charged, the ability to transfer electrons gives it the ability to be grounded.

 

Per ESD Handbook ESD TR20.20-2008 section 2.5 Material Electrical Characteristics – Insulative, Conductive and Static Dissipative: ” A conductive material allows electrons to flow easily across its surface. Conductive materials have low electrical resistance. If the charged conductive material makes contact with another conductive material, the electrons will transfer between the materials quite easily. If the second conductor is a wire lead to an earth grounding point, the electrons will flow to or from ground and the excess charge on the conductor will be “neutralized”. Static dissipative material will allow the transfer of charge to ground or to other conductive objects. The transfer of charge from a static dissipative material will generally take longer than from a conductive material of equivalent size.
There is no correlation between resistance measurements and the ability of a material to be low charging. Static dissipative material shall have a surface resistance of greater than or equal to 1.0 x 10^4 ohms but less than 1.0 x 10^11 ohms. Conductor less than 1.0 x 10^4, and non-Conductor or Insulator 1 x 10^11 ohms or higher.” [ANSI/ESD S541 section 7.2]

Take-away:

  • Electrical current flows easily in conductors.
  • Conductors can be grounded.

Insulators
Materials that do not easily transfer electrons are called insulators and are by definition non-conductors. Some well-known insulators are common plastics and glass. An insulator will hold the charge and cannot be grounded and “conduct” the charge away.

Both conductors and insulators may become charged with static electricity and discharge. Grounding is a very effective ESD control tool; however, only conductors (conductive or dissipative) can be grounded.

Insulators like this plastic cup will hold the charge and
cannot be grounded and “conduct” the charge away.

Per ESD Handbook ESD TR20.20-2008 section 2.5 Material Electrical Characteristics – Insulative, Conductive and Static Dissipative: “Virtually all materials, including water and dirt particles in the air, can be triboelectrically charged. An insulator is a material that prevents or limits the flow of electrons across or through its volume is called an insulator. A considerable amount of charge can be formed on the surface of an insulator.

Take-away:

  • Electrical current does not flow easily in insulators.
  • Insulators cannot be grounded.

Insulators are non-conductors and therefore cannot be grounded. Insulators can only be controlled by doing the following within an EPA:

  • Always keep insulators a minimum of 12 inch from ESDS items or
  • Replace regular insulative items with an ESD protective version or
  • Periodically apply a coat of topical Antistat.

All nonessential insulators such as coffee cups, food wrappers and personal items shall be removed from the workstation or any operation where unprotected ESDS items are handled.” [ANSI/ESD S20.20-2007 section 8.3]

“Process essential” Insulators
When none of the above is possible, the insulator is termed “process essential” and therefore neutralization using an ionizer should become a necessary part of the ESD control program.

Examples of some common process essential insulators are:

  • PC board substrate,
  • insulative test fixtures and
  • product plastic housings.

An example of isolated conductors can be conductive traces or components loaded on a PC board that is not in contact with the ESD worksurface.

Reduction of charges on insulators does occur naturally by a process called neutralization. Ions are charged particles that are normally present in the air and as opposite charges attract, charges will be neutralized over time.

A common example is a balloon rubbed against clothing and “stuck” on a wall by static charge. The balloon will eventually drop. After a day or so natural ions of the opposite charge that are in the air will be attracted to the balloon and will eventually neutralize the charge. An ionizer greatly speeds up this process.

A balloon “stuck” on a wall by static charge.

Ionizers and Neutralization
An ionizer creates great numbers of positively and negatively charged ions. Fans help the ions flow over the work area. Ionization can neutralize static charges on an insulator in a matter of seconds, thereby reducing their potential to cause ESD damage.

An ionizer creates positively and negatively charged ions.

Per ESD Handbook ESD TR20.20-2008 Ionization, section 5.3.6.1 Introduction and Purpose / General Information “The primary method of static charge control is direct connection to ground for conductors, static dissipative materials, and personnel. A complete static control program must also deal with isolated conductors that cannot be grounded, insulating materials (e.g. most common plastics), and moving personnel who cannot use wrist or heel straps or ESD control flooring or footwear. Air ionization is not a replacement for grounding methods. It is one component of a complete static control program. Ionizers are when it is not possible to properly ground everything and as backup to other static control methods.

Note: Ionizers require periodic cleaning of emitter pins and the offset voltage must be kept in balance. Otherwise, instead of neutralizing charges, if it is producing primarily positive or negative ions, the ionizer will place an electrostatic charge on items that are not grounded.

Summary
The 2nd of the three fundamental ESD Control principles is to neutralize process essential insulators with ionizers:
Per ANSI/ESD S20.20-2007 Foreword “The fundamental ESD control principles are:

  • All conductors in the environment, including personnel, must be attached to a known ground
  • Necessary non-conductors in the environment cannot lose their electrostatic charge by attachment to ground. Ionization systems provide neutralization of charges on these necessary non-conductive items (circuit board materials and some device packages are examples of necessary non-conductors).
  • Transportation of ESDS items outside of an ESD Protected Area requires enclosure in static protective materials… Outside an EPA, low charging and static discharge shielding materials are recommended.

In addition, if a conductor is not grounded, it is an isolated conductor, and an ionizer is the only means to neutralize ElectroStatic charges on it.

Now that you know what conductors and insulators are, how to treat them in an EPA and when to use ionization, the next step is to learn about the different types of ionizers available. Stay tuned for next time.

 

Creating a Compliance Verification Plan in 7 Steps

Every component in an ESD protected area (EPA) plays an important role in the fight against electrostatic discharge (ESD). Just one element not performing correctly could harm your ESD sensitive devices and potentially cost your company a lot of money. The problem with many ESD protection products is that you can’t always see the damage – think wrist straps! By just looking at a coiled cord, you can’t confirm it’s working correctly; even without any visible damage to the insulation, the conductor on the inside could be broken. This is where periodic verification comes into play.

Introduction
When implementing an ESD control program plan, ANSI/ESD S20.20 asks for several requirements to be addressed, one of which is “Compliance Verification”:
The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:

  • Training
  • Product Qualification
  • Compliance Verification
  • Grounding / Equipotential Bonding Systems
  • Personnel Grounding
  • ESD Protected Area (EPA) Requirements
  • Packaging Systems
  • Marking” [ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

ESD protected area (EPA) products should be tested:

  • Prior to installation to qualify product for listing in user’s ESD control program.
  • During the initial installation.
  • For periodic checks of installed products as part of TR20.20.

A Compliance Verification Plan shall be established to ensure the Organization’s fulfillment of the technical requirements of the ESD Control Program Plan. Process monitoring (measurements) shall be conducted in accordance with a Compliance Verification Plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The Compliance Verification Plan shall document the test methods and equipment used for process monitoring and measurements. If the test methods used by the organization differ from any of the standards referenced in this document, then there must be a tailoring statement that is documented as part of the ESD Control Program Plan. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements. The test equipment selected shall be capable of making the measurements defined in the Compliance Verification Plan.” [ANSI/ESD S20.20 clause 7.3 Compliance Verification Plan]

Components of a Verification Plan
Each company’s verification plan needs to contain:

1. A list of items that are used in the EPA and need to be checked on a regular basis
All ESD working surfaces, personnel grounding devices like wrist straps or foot grounders, ionizers etc. need to be included on the list. In summary: every item that is used for ESD Control purposes. It is recommended to create a checklist comprising all ESD control products as this will ensure EPAs are checked consistently at every audit.

2. A schedule specifying what intervals and how each item is checked
The test frequency will depend on several things, e.g.

  • how long the item will last,
  • how often it is used or
  • how important it is to the overall ESD control program.

As an example: wrist straps are chosen by most companies to ground their operators; they are the first line of defence against ESD damage. They are in constant use and are subjected to relentless bending and stretching. Therefore, they are generally checked at the beginning of each shift to ensure they are still working correctly and ESD sensitive items are protected. Ionisers on the other hand are recommended to be checked every 6 months: whilst they are in constant use, they are designed to be; the only actual ‘interaction’ with the user is turning the unit on/off. If, however, the ionizer is used in a critical clean room, the test frequency may need to be increased.

Testing-Wrist-Straps
It is recommended that Wrist Straps are checked before each shift

Testing and monitoring of smock and ground cord assembly

Test frequency limits are not listed in this document, as each user will need to develop their own set of test frequencies based on the critical nature of those ESD sensitive items handled and the risk of failure for the ESD protective equipment and materials.

Examples of how test frequencies are considered:

  • Daily wrist strap checks are sufficient in some applications while in other operations constant wrist strap monitoring may be used for added operator grounding reliability.
  • Packaging checks may depend on the composition of the packaging and its use. Some packaging may have static control properties that deteriorate more quickly with time and use, and some packaging may be humidity dependent and may have limited shelf life.
  • Some materials, such as ESD floor finishes, may require more frequent monitoring because of their lack of permanency. Other materials, such as ESD vinyl floor covering, may require less monitoring. The testing of a floor should also be considered after maintenance on the floor has been performed.” [ESD TR53-01-15 Annex A – Test Frequency]

The industry typically uses 2 types of verification to achieve maximum success: visual and measurement verification. As the name suggests, visual verification is used to ensure ESD working surfaces and operators are grounded, ESD flooring is in good shape or wrist straps are checked before handling ESD sensitive items.

Actual measurements are taken by trained personnel using specially designed equipment to verify proper performance of an ESD control item.

3. The suitable limits for every item used to control ESD damage
ANSI/ESD S20.20 contains recommendations of acceptable limits for every ESD control item. Following these references reduces the likelihood of 100V (HBM) sensitive devices being damaged by an ESD event.

Please bear in mind that there may be situations where the limits need to be adjusted to meet the company’s requirements.

4. The test methods used to ensure each ESD product meets the set limits
Tables 1 to 3 of ANSI/ESD S20.20 list the different test methods a company must follow.

If a company uses other test methods or have developed their own test methods, the ESD control program plan needs to include a statement explaining why referenced standards are not used. The company also needs to show their chosen test methods are suitable and reliable.

It is recommended that written procedures are created for the different test methods. It is the company’s responsibility to ensure anybody performing the tests understands the procedures and follows them accordingly.

5. The equipment used to take measurements specified in the test methods
Every company needs to acquire proper test equipment that complies with the individual test methods specified in Tables 1 to 3 of ANSI/ESD S20.20. Personnel performing measurements need to be trained on how equipment is used. ESD TR53-01-15 lists test procedures and equipment that can be used to verify ESD Control items.

SRMeter2_use
Checking an ESD Worksurface using a Surface Resistance Meter

6. A list of employees who will be performing the audits
Part of the verification plan is the choice of internal auditors. A few suggestions for the selection process:

  • Each individual is required to know the ESD Standard ANSI/ESD S20.20 AND the company’s individual ESD program.
  • It is essential that the selected team member recognizes the role of ESD control in the company’s overall quality management system.
  • It is recommended that each nominated worker has been trained on performing audits.
  • The designated employee should be familiar with the manufacturing process they are inspecting.

7. How to deal with non-compliance situations
Once an audit has been completed, it is important to keep everyone in the loop and report the findings to the management team. This is particularly vital if “out-of-compliance” issues were uncovered during the verification process. It is the responsibility of the ESD coordinator to categorize how severe each non-conformance is; key problems should be dealt with first and management should be notified immediately of significant non-compliance matters.

Results of audits (especially non-compliance findings) are generally presented using charts. Each chart should classify:

  • The total findings of the audit
  • The type of each finding
  • The area that was audited

It is important to note that each company should set targets for a given area and include a trend report. This data can assist in determining if employees follow the outlined ESD control program and if improvements can be seen over time.