HBM

6 Tips for handling “Class 0” Items

When talking about ESD Classifications a little while ago, we identified a “class 0” item as withstanding discharges of less than 250 volts.

The introduction of ANSI/ESD S20.20 states: “This standard covers the requirements necessary to design, establish, implement and maintain an Electrostatic Discharge (ESD) Control Program for activities that manufacture, process, assemble, install, package, label, service, test, inspect or otherwise handle electrical or electronic parts, assemblies and equipment susceptible to damage by electrostatic discharges greater than or equal to 100 volts Human Body Model (HBM) and 200 volts Charged Device Model (CDM).

So how do you handle items that are susceptible to voltages of less than 100V? That’s what we’re going to answer in today’s blog post.

 

Introduction

Years ago, it was common for devices to be vulnerable to voltages greater than 100 V. As the need for smaller and faster devices increased, so did their sensitivity to ElectroStatic Discharges as circuit-protection schemes were removed to stay ahead of the market. These new extremely sensitive components are now susceptible to discharges nearing 0 V. This causes problems for companies handling these devices: while their ESD program may be in compliance with the ESD Standard, extremely sensitive devices require tighter ESD Control to protect them from ESD failures.

 

What is a “Class 0” device?

Before moving any further, we need to qualify the term “class 0”. As stated above, the HBM Model refers to any item with a failure voltage of less than 250 V as a “class 0” component. However, in recent times, the term has been used more and more to describe ultra-sensitive devices with failure voltages of less than 100 V. Whilst the following tips and tricks work on any “class 0” item, they are specifically designed to protect extremely sensitive items that withstand discharges of less than 100 V.

esd_sterilization.jpg
Ultra-sensitive devices are extremely common

Before Updating Your ESD Program

“Class 0” refers to a wide range of items and there are a few things you should remember before making any changes to your existing ESD program:

  1. Verify what ESD Model your company/engineers/customers etc. are referring to. As we have learnt in the past, there are different ESD models (HBM, CDM, MM) as well as individual classifications for each model. A lot of people get confused when it comes to citing ESD classifications. There is only one “class 0” which refers to the human body model (HBM) but it’s always best to check.
  2. Check the specific withstand voltage an individual part is susceptible to. “Class 0” refers to all items that withstand discharges of less than 250 V. However, there is a big difference between a failure voltage of 240 V or 50 V. You need to have detailed ESD sensitivity information available before being able to make decisions on how to improve your existing ESD control program. This step is part of creating a compliance verification plan.
  3. A part’s ESD classification is only of importance until it is ‘merged’ into an assembly. So, the ESD classification of a device only refers to the stand-alone component. Once it goes into another construction, the classification of the whole assembly is likely to change.

 

Tips for handling “Class 0” Items

Below are 6 tips that will help your company to upgrade your ESD control program so you can effectively and efficiently handle ultra-sensitive items without risking ESD damage.

One thing to note: The best approach to stay ahead of the game is taking proactive actions. It is critical to figure out how to protect your components from ESD damage before you receive them. If actions are taken after components are received, the components are susceptible to receiving ESD damage.

 

1. Improve Grounding

Inside an EPA, all conductors (including people) are grounded. Now you’re probably thinking: “But I’ve already grounded my operators and worksurfaces. What else is there left to do?”. Firstly, well done for properly grounding the ‘objects’ in your EPA. The next step is to adjust and improve your current program to allow for even better protection. Here are some suggestions:

Personnel:

  • Decrease the wrist strap and ESD footwear upper limit. The ESD Association has test data showing charge on a person is less as the path-to-ground resistance is less.
  • Use continuous monitors and ESD smocks
  • Introduce/increase the use of ESD flooring
  • Use sole or full coverage foot grounders (rather than heel grounders)
770750-Use.jpg
Full coverage foot grounders are recommended when handling ultra-sensitive devices

Worksurfaces:

  • Reduce the required limit for Point-to-Point resistance of 1 x 109 per the ESD Standard to 106 to 108 ohms (see #5). The reason for this reduction is simple: 1 x 109 is too high as it still produces thousands of volts of in electrostatic charges. However, the resistance cannot be too small either as this can lead to a sudden ‘hard discharge’ potentially damaging ESD sensitive components.

Other:

  • Improve grounding of carts, shelves and equipment to Ground
  • Minimize isolated conductors like devices on PCBs

 

2. Minimize Charge Generation

The best form of control is to minimize charge generation. First, you should always use shielding packing products like bags or containers (especially when outside an EPA) as these protect from generating charges in the first place. For more information on choosing the correct type of ESD Packaging, we recommend reading this post.

The next step is to eliminate charges once they are generated – this can be achieved through grounding and ionization. We’ll cover ionization in #3 and #4. We’ve already talked about improved grounding in #1. However, for ultra-sensitive components, we also recommend the following:

  • Personnel: Use low-charging floor finish
  • Surfaces: Use low-charging topical antistatic treatments

Both types of ESD products create a low tribocharging coating which allows charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts.

 

3. Remove Insulators

When talking about conductors and insulators, we explained that insulators cannot be grounded and can damage nearby sensitive devices with a sudden uncontrolled discharge. It is therefore critical to eliminate ALL insulators that are not required in your EPA: plastic cups, non-ESD brushes, tapes etc. How? Here are a couple of options:

  • Replace regular production supplies and fixtures with dissipative, low charging versions, e.g. ESD dissipative brushes, ESD dispensers, ESD tape, ESD Chairs etc.
  • Shield charges on clothing by using ESD smocks.
Workstation.png
Use ESD safe accessories whenever possible

If an insulator is absolutely necessary for production and cannot be removed from the EPA, you could consider a topical treatment which will reduce triboelectric charges.

Is this not an option, then move on to tip #4.

 

4. Use Ionization

First, ionization is not a cure-all. We’ve learnt that ionizers neutralize charges on an insulator.

However, that does not mean that you can just have any insulator in your EPA because the ionizer will “just fix it”. No, in this instance, prevention is generally a better option than the cure. So, your priority should ALWAYS be to remove non-process essential insulators from your EPA – see tip #3. If this is not possible – then ionization becomes essential.

Ionization:

  • Ionizers can be critical to reduce induction charging caused by process necessary insulators
  • Ionizers can be critical in eliminating charges on isolated conductors like devices on PCBs
  • Offset voltage (balance) and discharge times are critical considerations depending on the actual application
  • Ionization can reduce ElectroStatic Attraction (ESA) and charged particles clinging and contaminating products.

It is recommended to use ionizers with feedback mechanisms, so you’re notified if the offset voltage is out of balance.

 

5. Increase ESD Training and Awareness

ESD Training is a requirement of every ESD Program. When handling ultra-sensitive devices, it is even more important to remind everyone what pre-cautions are necessary to avoid damage. Regular ‘refreshers’ are a must and it is recommended to verify the effectiveness of the training program, e.g. through tests. So, who, when and what should be taught?

AdobeStock_105568884.jpeg
ESD Training is a vital part of every successful ESD Control Program
  • ESD training needs to be provided to everyone who handles ESD sensitive devices – that includes managers, supervisors, subcontractors, visitors, cleaners and even temporary personnel.
  • Training must be given at the beginning of employment (BEFORE getting anywhere near a sensitive products) and in regular intervals thereafter.
  • Training should be conducted on proper compliance verification procedures and on the proper use of equipment used for verification.

 

6. Create an enhanced Compliance Verification Plan

We talked in a previous post about compliance verification, what it is and how to create a plan that complies with the ESD standard. So, if you already followed our steps and have a plan in place, here are a few tips to improve your compliance verification plan:

  • Use a computer data collection system for wrist straps and foot grounders testing
  • Increase the test frequency of personnel grounding devices from once per day to every time the operator enters the EPA
  • Use continuous monitors where operators are grounded via wrist straps. Consider computer based monitor data collection system, e.g. SMP. This should include continuous monitoring of the mat Ground.
  • Use Ground continuous monitors, e.g. Ground Master. At a large facility, the most frequent reoccurring violation is the ESD mat ground cord either becoming disconnected from the mat or grounding point. As Ground continuous monitors will only test the fact that the mat is grounded, it is still imperative that the Resistance to Ground of the mat is regularly tested. Remember that the use of improper mat cleaners can raise the mat surface resistance above the upper recommended level of <109
  • Test ionizers more frequently or consider self-monitoring ionizers. Computer based data collection systems are a good alternative, too.
  • Increase the use of a static field meter and nano coulomb testing to verify that automated processes (like auto insertion, tape and reel, etc.) are not generating charges above acceptable limits.

 

Conclusion

“Class 0” items require additional measures of ESD protection due to their sensitivity to ESD damage. The best way to protect these ultra-sensitive components is to increase ESD protective redundancies and periodic verifications to all ESD Control technical elements.

To decrease the probability of ESD damage while handling ultra-sensitive items, additional precautions are required. This includes additional and/or more stringent technical requirements for ESD control products, increasing redundancies, and more frequent periodic verifications or audits.

Additionally, ESD control process systems should be evaluated as to their performance as a system. It is important to understand how the technical elements in use perform relative to the sensitivity of the devices being handled. Thus, tailoring the process to handle the more sensitive parts. For example: If the footwear/flooring allows a person’s body voltage to reach 80 volts and a 50 withstand voltage item gets introduced into the process, you must either allow only handling via wrist straps or would have to find a way to modify the footwear/flooring performance to get peak voltages below the 50 volt threshold.

Remember: The ESD Standard gives recommendations that will always be behind current/future developments. As soon as a Standard is published, technology will have progressed. In order to protect your devices and company reputation for reliable devices – it is recommended your company take responsibility to implement methods/procedures that exceed the recommendations of the ESD Standard to fit your sensitive component requirements.

 

References: