Shielding Bags

5 Common Mistakes in ESD Control & How to Avoid Them

Many companies implement an ElectroStatic Discharge (ESD) Control Program with the aim of improving their operations. Effective ESD control can be a key to improving:

  • Productivity
  • Quality
  • Customer Satisfaction

Problems arise when an organization invests in ESD protective products and/or equipment and then misuses them. Misuse of ESD protective products and/or equipment wastes invested money and can also be causing more harm than good. Today’s blog post will highlight some of the major issues we have come across and how you can avoid or fix them.

About ESD Control and ESD Protection

Remember that for a successful ESD control program, ESD protection is required throughout the manufacturing process: from goods-in to assembly all the way through to inspection. Anybody who handles electrical or electronic parts, assemblies or equipment that are susceptible to damage by electrostatic discharges should take necessary precautions.

Just like viruses or bacteria that can infect the human body, ESD can be a hidden threat unable to be detected by human eyes. Hidden viral/bacterial threats in hospitals are controlled by extensive contamination control procedures and protective measures such as sterilization. The same principles apply to ESD control: you should never handle, assemble or repair electronic assemblies without taking adequate protective measures against ESD.

Common Mistakes in ESD Control

1. Ionizers are poorly maintained or out-of-balance

If an ionizer is out of balance, instead of neutralizing charges, it will produce primarily positive or negative ions. This results in placing an electrostatic charge on items that are not grounded, potentially discharging and causing ESD damage to nearby sensitive items.

Step3 Remember to clean emitter pins and filters using appropriate tools. Create a regular maintenance schedule which will extend the lifespan of your ionizers tremendously.

Consider using ionizers with “Clean Me” and//or “Balance” alarms. These will alert you when maintenance is required.

Step2.png All ionization devices will require periodic maintenance for proper operation. Maintenance intervals for ionizers vary widely depending on the type of ionization equipment and use environment. Critical clean room use will generally require more frequent attention. It is important to set up a routine schedule for ionizer service.”

[ESD TR20.20 Handbook Ionization clause 15.8 Maintenance / Cleaning]

If you would like to learn more about how ionizers work and what type of ionizer will work best for your application, check out this post for detailed coverage.

2. ESD Garments are Ungrounded

We’ve seen it so many times: operators wearing an ESD coat (without appropriate wrist straps and/or footwear/flooring) thinking they are properly grounded. However, without proper electrical bonds to a grounding system they are not grounded!

Step3 Every ESD garment needs to be electrically bonded to the grounding system of the wearer. Otherwise it just acts as a floating conductor. There are a few options to choose from:

  • Wrist Straps
  • ESD footwear/flooring
  • Hip-to-Cuff grounding
Step2 After verifying that the garment has electrical conductivity through all panels, the garment should be electrically bonded to the grounding system of the wearer so as not to act as a floating conductor.

This can be accomplished by several means:

  1. Ground the garment to the body through a wrist strap-direct connection with an adapter.
  2. Ground the garment through conductive wrist or heel cuffs in direct contact with the skin of a grounded operator.
  3. Ground the garment through a typical separate ground cord, directly attached to an identified groundable point on the garment.
  4. Garments should be worn with the front properly snapped or buttoned to avoid exposure of possible charge on personal clothing worn under the garment.

[ESD TR20.20 Handbook Garments clause 19.4 Proper Use]

ESD clothing loses their ESD properties over time. It is therefore an important part of the ESD Control Program to incorporate periodic checks (see #3 below) of ESD garments.

If you need more information on ESD garments, we recommend having a look at this post.

3. No Compliance Verification Plan / Not Checking ESD Control Products

Companies can invest thousands of dollars in purchasing and installing ESD control products but then waste their investment by never checking their ESD items. This results in ESD equipment that is out of specification. Without the tools in place to check their ESD items, companies may have no idea if they are actually working correctly. Remember: ESD products (like any other product) are subject to wear and tear, and other errors when workstations get moved, ground cords get disconnected…etc. The list goes on.

Step3 When investing in ESD control products, make sure you also establish a Compliance Verification Plan. This ensures that:

  • ESD equipment is checked periodically
  • Necessary test equipment is available
Step2 A compliance verification plan shall be established to ensure the organization’s fulfilment of the requirements of the plan. Process monitoring (measurements) shall be conducted in accordance with a compliance verification plan that identifies the technical requirements to be verified, the measurement limits and the frequency at which those verifications shall occur. The compliance verification plan shall document the test methods used for process monitoring and measurements. If the organization uses different test methods to replace those of this standard, the organization shall be able to show that the results achieved correlate with the referenced standards. Where test methods are devised for testing items not covered in this standard, these shall be adequately documented including corresponding test limits. Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements.
The test equipment selected shall be capable of making the measurements defined in the compliance verification plan.
”[ANSI/ESD clause 7.4 Compliance verification plan]

We provide detailed instructions on how to create a Compliance Verification Plan in this post.

4. Improperly Re-Using Shielding Bags / Using Shielding Bags with Holes or Scratches

ESD Shielding Bags are used to store and transport ESD sensitive items. When used properly, they create a Faraday Cage effect which causes charges to be conducted around the outside surface. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’. However, if the shielding layer of an ESD Shielding Bag is damaged, ESD sensitive items on the inside will not be protected anymore.

Step3 Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

Use a system of labels to identify when the bag has gone through five (5) handling cycles. When there are five broken labels, the bag is discarded.

Step2 ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.

Transportation of ESDS items outside an ESD Protected Area (hereafter referred to as “EPA”) requires enclosure in static protective materials, although the type of material depends on the situation and destination. Inside an EPA, low charging and static dissipative materials may provide adequate protection. Outside an EPA, low charging and static discharge shielding materials are recommended. While these materials are not discussed in

the document, it is important to recognize the differences in their application. For more clarification see ANSI/ESD S541.

[ANSI/ESD Foreword]

This post provides further “dos and don’ts” when using ESD Shielding Bags.

5. Using Household Cleaners on ESD Matting

The use of standard household cleaners on ESD matting can put an ESD Control Program at risk and damage the ESD properties of items. Many household cleaners contain silicone or other insulative contaminants which create that lovely shine you get when wiping surfaces in your home. The problem is that silicone and other chemical contaminates can create an insulative layer which reduces the grounding performance of the mat.

Step3 Don’t spend all this extra money on ESD matting and then coat it with an insulative layer by using household cleaners. There are many specially formulated ESD surface and mat cleaners available on the market. Only clean your ESD working surfaces using those cleaners.
Step2 “Periodic cleaning, following the manufacturer’s recommendations, is required to maintain proper electrical function of all work surfaces. Ensure that the cleaning products used to not leave an electrically insulative residue which is common with some household cleaners that contain silicone.”

[ESD TR20.20 Handbook Worksurfaces clause 10.5 Maintenance]

Conclusion

There are many more issues we see when setting foot into EPAs and the above list is by no means complete. These are the most common issues we’ve found when assessing EPAs.

It is important to train all personnel using ESD products and/or equipment to follow proper ESD control programs, and maintenance procedures to avoid common ESD control mistakes. Basic ESD control principles should be followed for an ESD control program to be successful:

  • Ground conductors.
  • Remove, convert or neutralize insulators with ionizers.
  • Shield ESD sensitive items when stored or transported outside the EPA.

What mistakes do you commonly see when walking through an EPA? Let us know what you commonly see in the comments and your solutions for fixing them!

For more information on how to get your ESD control program off the ground and create an EPA, check this post.

5 Tips For Using ESD Shielding Bags

In a previous post we learnt how to select the correct ESD bag for your application, we want to focus on the next step: how to correctly use your ESD bag. We’ll use shielding bags as an example as they are the most commonly used ESD bags. However, the below can be applied to all types of ESD bags.

There are a few “dos and do-nots” you should keep in mind to ensure you get the most from your ESD bags. Nothing is worse than investing in all the right equipment and then using it incorrectly rendering all your efforts void. So, on that note, we have comprised a list of 5 tips for you on how to most efficiently use your shielding bags.

5 Tips On Efficient Use of Shielding Bags With ESD Sensitive Items:

1. Enclose Your ESD Sensitive Item with a Shielding Bag

Shielding bags should be large enough to enclose the entire product within. The shielding bag should be closed with a label or tape. Alternatively, you can use a zipper-style shielding bag. Following this advice ensures a continuous Faraday Cage is created which provides electrostatic shielding. This is the only way to ensure ESD sensitive devices placed inside the shielding bag are protected. If you are unfamiliar with the term “Faraday Cage”, scroll to the bottom of this page – we’ve included a more detailed explanation at the end of the post.

 

Enclose_Shielding_Bags
Enclose your ESD sensitive item

 

Please do not staple your shielding bag. The staple punctures the shielding layers and will provide a conductive path from the outside of the shielding bag to the inside. Charges outside the shielding bag could potentially charge or discharge to ESD sensitive components inside the shielding bag.

If you’re unsure as to what the correct size is for your application, catch-up on this post which will provide all the required information.

2. Remove Charges from Shielding Bags

When receiving an ESD sensitive device enclosed in a shielding bag, make sure you place the closed shielding bag on an ESD worksurface before removing the product. This will eliminate any charge that might have accumulated on the surface of the shielding bag.

 

Remove_Static_Charges.jpg
Remove charges

 

 3. Do Not Overuse Shielding Bags

Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

 

Dont_overuse_shielding_bags
Don’t overuse shielding bags


 4. Shielding Bags Are Not A Working Surface

Do not use a shielding bag as an ESD worksurface. Although a shielding bag is safe to use around ESD susceptible products, it is not intended to be a worksurface for product. When working on ESD sensitive devices, do so using ESD worksurfaces that are grounded correctly.

Shielding_Bags_are_no_ESD-Worksurface.jpg
Don’t use shielding bags as your ESD worksurface

 5. A Shielding Bag Is Not A “Potholder” Or “Glove”

Do not use a shielding bag as an “ESD potholder” or “ESD glove”. This type of use offers no ESD protection to the product.

If you need to handle ESD sensitive devices, make sure you are properly grounded using wrist straps or heel grounders.

Shielding_Bags_are_no-Gloves
Shielding bags are no “ESD glove” or “ESD potholder”

Some of you may have read through this post and have stumbled across the term “Faraday Cage” as you have not come across it before. We’ve also mentioned it before when talking about storing and transporting ESD sensitive items. However, we’ve never actually explained what a Faraday Cage is – so let’s rectify that!

What Is A “Faraday Cage” Or “Faraday Shield”?

A Faraday Cage or Faraday shield is an enclosure formed by conducting material or by a mesh of conductive material. Such an enclosure blocks external static and non-static electric fields. Faraday Cages are named after the English scientist Michael Faraday, who invented them in 1836.

What Is An Example of Faraday Cage Effect?

An impressive demonstration of the Faraday Cage effect is that of an aircraft being struck by lightning. This happens frequently but does not harm the plane or passengers. The metal body of the aircraft protects the interior. For the same reason, a car may be a safe place during a thunderstorm.

 

Lightning.jpg
Lightning striking an airplane

 

How Is A Faraday Cage Effect Used In ESD Protection?

In ESD Protection, the Faraday Cage effect causes charges to be conducted around the outside surface of the conductor. Since similar charges repel, charges will rest on the exterior and ESD sensitive items on the inside will be ‘safe’.

Examples of ESD control products that provide a Faraday Cage or shielding include Metal-In and Metal-Out Shielding bags.

When Is ESD Shielding Packaging Used?

ESD shielding packaging is to be used particularly when transporting or storing ESD sensitive items outside an ESD Protected Area.

ESD Packaging Standards For Outside An EPA

Per Packaging Standard ANSI/ESD S541 clause 6.2 Outside an EPA “Transportation of sensitive products outside of an EPA shall require packaging that provides:

  • Low charge generation.
  • Dissipative or conductive materials for intimate contact.
  • A structure that provides electrostatic discharge shielding.

Additional ESD Definitions

Other helpful ESD related definitions from the ESD Association Glossary ESD ADV1.0 include:

Faraday Cage“A conductive enclosure that attenuates a stationary electrostatic field.
Electrostatic discharge (ESD) shield: “A barrier or enclosure that limits the passage of current and attenuates an electromagnetic field resulting from an electrostatic discharge.
Electrostatic shield: “A barrier or enclosure that limits the penetration of an electrostatic field.

So, hopefully we’ve clarified a few things today when it comes to the “shielding” property by explaining the phenomenon of the “Faraday Cage”. Don’t forget to implement our tips when it comes to using your ESD bags!

 

Checking your ESD Control Products

Last time we explained how to easily create a compliance verification plan and why it’s important to have one in place. Today’s post will elaborate on the subject of periodic verification and highlight common products in your EPA that should be regularly verified and more importantly how they should be checked.

Why periodic verification
Compliance verification is a requirement of ANSI/ESD S20.20:
The Organization shall prepare an ESD Control Program Plan that addresses each of the requirements of the Program. Those requirements include:
– Training
– Product Qualification
– Compliance Verification
– Grounding / Equipotential Bonding Systems
– Personnel Grounding
– ESD Protected Area (EPA) Requirements
– Packaging Systems
– Marking” [ANSI/ESD S20.20 clause 7.1 ESD Control Program Plan]

Installed ESD Control products must be checked regularly to ensure they meet the required limits per the ESD Standard. “Compliance verification records shall be established and maintained to provide evidence of conformity to the technical requirements. The test equipment selected shall be capable of making the measurements defined in the Compliance Verification Plan.” [ANSI/ESD S20.20 clause 7.3 Compliance Verification Plan]

Below, you will find a list of the most common ESD Control Products in your EPA and how to test them:

Worksurface Matting
The purpose of ESD workbench matting is to ensure that when charged conductors (conductive or dissipative) are placed upon the surface, a controlled discharge occurs and electrostatic charges are removed to ground. However, this only occurs if the ESD worksurface is connected to ground. If the matting is out-of-spec, not grounded at all, or the stud on the mat has become loose or if the ground cord has become disconnected, charges cannot be removed.
Many companies use a daily checklist, which includes the operator having to verify that ground cords are firmly connected.
Remember to regularly clean your workbench matting to maintain proper electrical function. Do not use cleaners with silicone as silicone build-up will create an insulative film on the surface.
The company’s compliance verification plan should include periodic checks of worksurfaces measuring:

  • Resistance Point-to-Point (Rp-p) and
  • Resistance-to-ground (Rg)
Testing a worksurface using SRMETER2

A surface resistance tester can be used to perform these tests in accordance with ANSI/ESD S20.20 and its test method ESD TR53; if these measurements are within acceptable ranges, the worksurface matting and its connections are good.

Wrist Straps
As discharges from people handling ESD sensitive devices cause significant ESD damage, the wrist strap is considered the first line of ESD control.
Before handling ESD sensitive items, you should visually inspect the wrist strap to see if there are any breakages etc. The wrist strap should then be tested while worn using a wrist strap tester. This ensures all three components are checked: the wrist band, the ground cord (including resistor) and the contact with the operator’s skin. Records of each test should be kept. Wiggling the resistor strain relief portion of the coil cord during the test will help identify failures sooner. Analysis and corrective action should take place when a wrist strap tester indicates a failure.

Checking wrist straps using 746

It is recommended that wrist straps are checked at least daily. An even better solution to daily wrist strap checks is the use of continuous monitors. They will alarm if the person or worksurface is not properly grounded.

A note on worksurface matting and wrist straps: if you are using common ground points to ground the operator and/or work surface matting, remember to measure resistance to ground regularly as well (every 6 months for example).

Floor Matting
A flooring / footwear system is an alternative for personnel grounding for standing or mobile workers. Foot grounders quickly and effectively drain the static charges which collect on personnel during normal, everyday activities. Foot grounders should be used in conjunction with floor surfaces which have a surface resistance of less than 1010 ohms.
As ESD floors get dirty, their resistance increases. For optimum electrical performance, floor matting must be cleaned regularly using an ESD mat cleaner. Do not use cleaners with silicone as silicone build-up will create an insulative film on the surface.
Dissipative floor finish can be used to reduce floor resistance. Periodic verification will identify how often the floor finish needs to be applied. As the layer(s) of dissipative floor finish wear, the resistance measurements will increase. So, after some amount of data collection, a cost-effective maintenance schedule can be established.
Floor matting can be checked using a resistance meter. A surface resistance meter is designed to measure resistance point-to-point (Rp-p) or surface to ground (Rg) in accordance with ANSI/ESD S20.20 and its test method ESD TR53.

Footwear
ESD Shoes or foot grounders play an essential part in the flooring/footwear system.
Before handling ESD sensitive devices, visually inspect your ESD footwear for any damage. Just like wrist straps, footwear should be checked while being worn using a wrist strap/footwear tester.

Checking foot grounders using 770750

Records of each test should be kept. Analysis and corrective action should take place when a footwear tester indicates a failure. Footwear needs to be checked daily.

ESD Packaging
Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

An operator packing an ESD sensitive item into a Shielding Bag
Make sure your ESD shielding bags are un-damaged

It is up to the user to determine if a shielding bag is suitable for re-use or not. The testing of every bag before re-use is not practical. Many companies will discard the shielding bag once used and replace it with a new one. Others will use a system of labels to identify when the bag has gone through five handling cycles:

  • Non-reusable labels are used that require the label be broken to open the bag.
  • The bag is then resealed with a new label.
  • When there are five broken labels, the bag is discarded.

The same principle applies to other ESD packaging, e.g. component shippers.

Ionizers
Ionizers are intended to neutralize static charges on insulators thereby reducing their potential to cause ESD damage. However, poorly maintained ionizers with dirty emitter pins and out-of-balance ionisers can put a charge on ungrounded items.
Remember to clean ionizer emitter pins and filters regularly. You can now even purchase ionizers that will alarm when emitter pins need to be cleaned or the ionizer is out of balance.

Charge plate monitor and static decay measurements using 963E ionized air blower

Static neutralization (the ability to reduce or eliminate a charge on a surface) is an important quality for ionizers. Static decay time is defined as the time interval needed to reduce a defined voltage potential on an object to a defined lower potential by means of applied ionized air. Another important aspect for ionizers is the ability to produce a balanced stream of positive and negative ions. A charged plate monitor or equivalent can be used to accurately measure both of these parameters.
For more detailed information on measuring the performance of ionizers refer to the ESD standard ANSI/EOS/ESD-S3.1 for Protection of Electrostatic Discharge Susceptible Items-Ionization.

Wrist Strap/Footwear and Resistance Testers etc.
So, you check your wrist straps and/or footwear and workbench and/or floor matting regularly. But have you remembered the testers themselves? What good do all the checks do, if the testers you use are out-of-spec and show you incorrect results?
Yearly calibration is recommended – many manufacturers offer a calibration service or alternatively you can purchase calibration units from them and perform the calibration yourself.

There you have it – a list of the most commonly used products in your ESD Protected Area (EPA) that you should check on a regular basis.
Questions for you: Do you have a verification plan in place? If so, how often do you check your ESD protection products?