Static Management Program

In today’s connected world, we are surrounded by home monitoring networks, fitness trackers and other smart systems. They all use an IoT platform to keep us up to-date with the current temperature in our house or the number of steps we have taken in a day. There are many different applications of IoT: Consumer, Commercial, Industrial, and Infrastructure, but is there a way to use this incredibly smart technology to improve ESD Control? Let’s take a look!

What Is The Internet of Things (IoT)?

The Internet of Things (IoT) is used everywhere today – from medical devices, to vehicles, to homes and more! Simply put, IoT:

  • Connects “things” in the physical world to the internet using sensors.
  • Collects data for these “things” via sensors.
  • Analyses the collected data and provides a deeper insight into the “things”.

Another broad definition provided for IoT is:

The Internet of Things (IoT) is the network of physical devices, vehicles, home appliances, and other items embedded with electronics, software, sensors, actuators, and connectivity which enables these things to connect and exchange data, creating opportunities for more direct integration of the physical world into computer-based systems, resulting in efficiency improvements, economic benefits, and reduced human exertions.” [Source]

 

Iot History-min.jpgThe history of IoT [Source]

 

What Is The Industrial Internet of Things (IIoT)?

As mentioned previously, there are many different applications for IoT, but The Industrial Internet of Things (IIoT) applies specifically to manufacturing and industrial processes.

It has slightly different requirements compared to consumer IoT products but the principle is the same: smart machines (incorporating various sensors) accurately and consistently capture and analyze real-time data allowing companies to pick-up problems as soon as (or even before) they appear.

Internet of Things (IoT) and Industry 4.0

IoT helped push the 3rd industrial revolution (machine automation) one step further. “Cyber Physical Systems (CPS) dominate the manufacturing floor, linking real objects with information processing, and virtual objects via the internet. The goal is to converge Operational Technology (OT) and Information Technology (IT).” [Source]

The 4th industrial revolution is also referred to as “Industry 4.0”. “At the very core Industry 4.0 includes the (partial) transfer of autonomy and autonomous decisions to cyber-physical systems and machines, leveraging information systems”. [Source]

Industry-4.0-shutterstock_524444866_pk_cut.jpgIndustry 4.0 as fourth industrial revolution [Source]

So, how can companies use the power of IoT and create accessible, real-time feedback on the status of their ESD Control Protected Area (EPA) and ESD control items?

 

Industry 4.0 IoT Platforms in ESD Control

ESD damages can be extremely costly – especially when it comes to latent defects that are not detected until the damaged component is installed in a customer’s system. Conventional ESD control programs incorporate periodic verification checks of ESD control products to detect any issues that could result in ESD events and ESD damage. The problem is that ESD control products (and the EPA as a whole) are not constantly monitored.

Take an ionizer for example: if a company uses ionization to handle process-essential insulators, the ionizers need to be fully reliable at all times. If an ionizer passes one check but is found to be out of balance at the next, the company faces a huge problem: nobody knows WHEN exactly the ionizer failed or if contributed to a charged insulator potentially causing ESD damage.

The Industry 4.0 IoT platform will be a game changer when it comes to creating a reliable and dependable ESD control program. Sensors collecting vital ESD information like field voltage, Electromagnetic Interference (EMI), temperature, humidity etc. in an EPA will help detect potential threats in real-time allowing supervisors to act even before an ESD threat occurs.

Advantages of Internet of Things (IoT) in ESD Control

Here is a (by no means exhaustive) list of advantages, IoT can bring to ESD Control:

Collecting Data

The day in an EPA can be busy. Taking the time to capture and record measurements of ionizers, wrist straps, work surfaces, automated processes etc. can be disruptive and is prone to errors. IoT allows data to be collected automatically without any input from users. This helps to increase the accuracy of data and allows operators and supervisors more time focusing on their actual jobs.

Smart-Factory.pngCollecting data is the first step to managing processes – more information

Analyzing Data

Supervisors have all the essential data in one place right in front of them and can make informed decisions; they can provide feedback and give suggestions in case of an ESD emergency. IoT allows to pinpoint areas of concern and prevent ESD events.

24/7 Monitoring

IoT continuously monitors processes and provides a real-time picture of them – no manual checks required. If a potential threat is detected, warnings will show-up immediately. There is no need to worry about potentially damaging sensitive devices because the next scheduled check of ionizers, wrist straps etc. has not been completed yet.

Cutting Costs

The number one reason for adapting an ESD control program is to reduce costs by:

  • Enhancing quality and productivity,
  • Increasing reliability,
  • Improving customer satisfaction,
  • Lowering repair, rework and field service costs and
  • Reducing material, labor and overhead costs.

Reduced Workload and Increased Productivity

IoT pushes all the above even further with the additional benefits of:

  • Reduced workload for operators: Data is collected remotely without any input from users. Operators are not disrupted in their day-to-day activities.
  • Reduced workload for supervisors: Supervisors don’t have to collect and analyze data from personnel testers, field meters, monitors etc. The system does it for them and will highlight any issues.
  • Further increases in productivity and cost reductions: An ESD program can be managed better and with fewer resources.

 

SMT-Line-Layout.jpgStatic Management Program (SMP): the next generation of ESD Process Control – more information

 

Conclusion

IoT will no doubt change ESD control and the way EPAs are monitored. Quantifiable data allows companies to see trends, become more proactive and improve the efficiency of their ESD process control system. IoT will support organizations’ efforts to make more dependable products, improve yields, increase automation and provide a measurable return on investment. Not only will this benefit users and supervisors, but the company as a whole.

SCS Static Management Program (SMP) is the only smart ESD system on the market that continuously monitors your entire ESD process control system throughout all stages of manufacturing. SMP captures data from SCS workstation, equipment and ESD event continuous monitors and provides a real-time picture of critical manufacturing processes.

For more information on how to continuously monitor your ESD control program and/or improve an existing program, request a free ESD/EOS Assessment or SMP demo at your facility by one of our knowledgeable local representatives to evaluate your ESD program and answer any ESD questions!

 

Resources:

Bill McCabe: Quick History of the Internet of Things..
Margaret Rouce: industrial internet of things (IIoT)
Michelle Lam: ESD Control in the World of IoT
Ian Wright: What Is Industry 4.0, Anyway?
Pascal Kriesche: Humans vs. machines – who will manage the factory of the future?
Industry 4.0 Resource: Industry 4.0: the fourth industrial revolution – guide to Industry 4.0

Introduction

Electronic devices and systems can be damaged by exposure to high electric fields as well as by direct electrostatic discharges. A good circuit layout and on-board protection may reduce the risk of damage by such events, but the only safe action at present is to ensure that devices are not exposed to levels of static electricity above the critical threshold.

This can only be achieved by introducing a static control program which usually involves setting up an ESD Protected Area (EPA) in which personnel are correctly grounded and all meet the ESD Standard. However, setting up an EPA does not of itself guarantee a low static environment. Production procedures may change, new materials may be introduced, the performance of older materials may degrade and so on.

Measuring Effectiveness of an ESD Control Program

To ensure the effectiveness of any static control program it is important that regular measurements are carried out:

  1. to determine the sensitivity to ESD of devices being produced or handled.
  2. to confirm that static levels are lower than the critical level, and that new or modified work practices have not introduced high static levels.
  3. to ensure that both new and existing materials in the EPA meet the necessary requirements.

Only after an ‘operational baseline’ has been established by regular auditing will it become possible to identify the origin of unexpected problems arising from the presence of static.

1. Determining the sensitivity of ESD sensitive Devices

It is important to understand the sensitivity of ESD sensitive devices before an action plan can be created. Once you know the sensitivity of the items you are handling, can you work towards ensuring you’re not exceeding those levels.

Part of every ESD control plan is to identify items in your company that are sensitive to ESD. At the same time, you need to recognize the level of their sensitivity. As explained by the ESD Association, how susceptible to ESD a product is depends on the item’s ability to either:

  • dissipate the discharge energy or
  • withstand the levels of current.

2. Measurements to prove the effectiveness of an ESD Control Program

Measuring electrostatic quantities poses special problems because electrostatic systems are generally characterized by high resistances and small amounts of electrical charge. Consequently, conventional electronic instrumentation cannot normally be used.

Measuring Electrical Field

Wherever electrostatic charges accumulate, they can be detected by the presence of an associated electric field. The magnitude of this field is determined by many factors, e. g. the magnitude and distribution of the charge, the geometry and location of grounded surfaces and the medium in which the charge is located.

The current general view of experts is that the main source of ESD risk may occur where ESDS can reach high induced voltage due to external fields from the clothing, and subsequently experience a field induced CDM type discharge.” [CLC TR 61340-5-2 User guide Garments clause 4.7.7.1 Introductory remarks]

718_Use2.jpg
Using the 718 Static Sensor to test static fields

A static field meter is often used for ESD testing of static fields. It indicates surface voltage and polarity on objects and is therefore an effective problem-solving tool used to identify items that are able to be charged.

A field meter can be used to:

  • verify that automated processes (like auto insertion, tape and reel, etc.) are not generating charges above acceptable limits.
  • measure charges generated by causing contact and separation with other materials.
  • demonstrate shielding by measuring a charged object and then covering the charged item with an ESD lab coat or shielding bag. Being shielded the measured charge should be greatly reduced.

 

Measuring ESD Events

ESD events can damage ESD sensitive items and can cause tool lock-ups, erratic behavior and parametric errors. An ESD Event Detector like the EM Eye ESD Event Meter will help detect most ESD events. It detects the magnitude of events and using filters built into the unit, it can provide approximate values for some ESD events for models (CDM, MM, HBM) using proprietary algorithms.

Using the EM Eye ESD Event Meter to detect ESD Events

Solving ESD problems requires data. A tool counting ESD events will help carry out a before-and-after analysis and will prove the effectiveness of implementing ESD control measures.

 

3. Checking Materials in your EPA

When talking about material properties, the measurement you will most frequently come across is “Surface Resistance”. It expresses the ability of a material to conduct electricity and is related to current and voltage. The surface resistance of a material is the ratio of the voltage and current that’s flowing between two pre-defined electrodes.
It is important to remember that the surface resistance of a material is dependent on the electrodes used (shape as well as distance). If your company implements an ESD control program compliant to the ESD Standard ANSI/ESD S20.20, it is therefore vital to carry out surface resistance measurements as described in the Standard itself. For more information on the definition of resistance measurements used in ESD control, check out this post.

A company’s compliance verification plan should include periodic checks of surfaces measuring:

  • Resistance Point-to-Point (Rp-p) and
  • Resistance-to-ground (Rg).
SRMeter2_use.jpg
Measuring Surface Resistance of worksurface matting using the
SRMETER2 Surface Resistance Meter

Surface resistance testers can be used to perform these tests in accordance with ANSI/ESD S20.20 and its test method ANSI/ESD S4.1; if these measurements are within acceptable ranges, the surface and its connections are good. For more information on checking your ESD control products, catch-up with this. It goes into depth as to what products you should be checking in your EPA and how they should be checked.

 

Conclusion

Measurements form an integral part of any ESD control program. Measuring devices help identify the sensitivity of ESD devices that ESD programs are based on, and also are used to verify the effectiveness of ESD control programs set in place. High quality instruments are available commercially for measuring all the parameters necessary for quantifying the extent of a static problem.

We hope the list above has introduced the techniques most commonly used. For more information on how to get your ESD control program off the ground, Request a free ESD/EOS Assessment at your facility by one of our knowledgeable local representatives to evaluate your ESD program and answer any ESD questions!

 

 

The best-equipped service bench in your shop can be a real money-maker when set up properly. It can also be a source of frustration and lost revenue if the threat of ElectroStatic Discharge (ESD) is ignored.

A typical scenario might be where an electronic product is brought in for service, properly diagnosed and repaired, only to find a new symptom requiring additional repair. Unless the technician understands the ESD problem and has developed methods to keep it in check damage from static electricity cannot be ruled out as a potential source of the new problem.

Static electricity is nothing new; it’s all around us and always has been. What has changed is the spread of semiconductors in almost every consumer product we buy. As device complexity increases, often its static sensitivity increases as well. Some semiconductor devices may be damaged by as little as 20-30 volts!

It is important to note that this post is addressing the issue of ESD in terms of control, and not elimination. The potential for an ESD event to occur cannot be completely eliminated outside of a laboratory environment, but we can greatly reduce the risk with proper training and equipment. By implementing a good static control program and developing some simple habits, ESD can be effectively controlled.

The Source of the Problem

Static is all around us. We occasionally will see or feel it by walking on carpet, touching something or someone and feeling the “zap” of a static discharge. The perception level varies but static charge is typically 2000-3000 volts before we can feel it. ESD sensitivity of some parts is under 100 volts – well below the level that we would be able to detect.

Even though carpet may not be used around the service bench, there are many other static “generators” may not be obvious and frequently found around or on a service bench. The innocent-looking Styrofoam coffee cup can be a tremendous source of static. The simple act of pulling several inches of adhesive tape from a roll can generate several thousand volts of static! Many insulative materials will develop a charge by rubbing them or separating them from another material. This phenomenon is known as “tribocharging” and it occurs often where there are insulative materials present.

Tape.JPG
Sources of Charge Generation: Unwinding a Roll of Tape

People are often a major factor in generation of static charges. Studies have shown that personnel in a manufacturing environment frequently develop 5000 volts or more just by walking across the floor. Again, this is “tribocharging” produced by the separation of their shoes and the flooring as they walk.

A technician seated at a non-ESD workbench could easily have a 400-500 volt charge on his or her body caused not only by friction or tribocharging, but additionally by the constant change in body capacitance that occurs from natural movements. The simple act of lifting both feet off the floor can raise the measured voltage on a person as much as 500-1000 volts.

Setting up a “Static Safe” Program

Perhaps the most important factor in a successful static control program is developing an awareness of the “unseen” problem. One of the best ways to demonstrate the ESD hazard is by using a “static field meter”. The visual impact of locating and measuring static charges of more than 1000 volts will get the attention of skeptical individuals.

718.jpg
Static Field Meter – find more information here

Education of Personnel

ESD education and awareness are essential basic ingredients in any effective static control program. A high level of static awareness must be created and maintained in and around the protected area. Once personnel understand the potential problem, reinforce the understanding by hanging up static control posters in strategic locations. The technician doesn’t need an unaware and/or unprotected person wandering over and touching things on the service bench.

Workstation Grounding

To minimize the threat of an ESD event, we need to bring all components of the system to the same relative potential and maintain that potential. Workstations can be grounded with the following options:

  1. Establish an ESD Common Grounding Point, an electrical junction where all ESD grounds are connected to. Usually, a common ground point is connected to ground, preferably equipment ground.
  2. The Service Bench Surface should be covered with a dissipative material. This can be either an ESD-type high-pressure laminate formed as the benchtop surface, or it may be one of the many types of dissipative mats placed upon the benchtop surface. The mats are available in different colors, with different surface textures, and with various cushioning effects. Whichever type is chosen, look for a material with surface resistivity of 1 x 109 or less, as these materials are sufficiently conductive to discharge objects in less than one second. The ESD laminate or mat must be grounded to the ESD common grounding point to work properly. Frequently, a one Megohm current limiting safety resistor is used in series with the work surface ground. This blog post will provide more information on how to choose and install your ESD working surface.
ESD-Worksurface-Matting.jpg
Types of Worksurface Matting – click here for more information
  1. A Dissipative Floor Mat may also be used, especially if the technician intends to wear foot-grounding devices. The selection of the floor mat should take into consideration several factors. If anything is to roll on the mat, then a soft, cushion-type mat will probably not work well. If the tech does a lot of standing, then the soft, anti-fatigue type will be much appreciated. Again, the mat should be grounded to the common ground point, with or without the safety resistor as desired.
  2. Workstation Tools and Supplies should be selected with ESD in mind. Avoid insulators and plastics where possible on and around the bench. Poly bags and normal adhesive tapes can generate substantial charges, as can plastic cups and glasses. If charge-generating plastics and the like cannot be eliminated, consider using one of the small, low cost air ionizers It can usually be mounted off the bench to conserve work area, and then aimed at the area where most of the work is being done. The ionizer does not eliminate the need for grounding the working surface or the operator, but it does drain static charges from insulators, which do not lend themselves to grounding.

Personnel Grounding

People are great static generators. Simple movements at the bench can easily build up charges as high as 500-1000 volts. Therefore, controlling this charge build-up on the technician is essential. The two best known methods for draining the charge on a person are wrist straps with ground cords and foot or heel grounders. Personnel can be grounded through:

  1. Wrist Straps are probably the most common item used for personnel grounding. They are comprised of a conductive band or strap that fits snugly on the wrist. The wrist strap is frequently made of an elastic material with a conductive inner surface, or it may be a metallic expandable band similar to that found on a watch. For more information on wrist straps, check out this post.
  2. Ground Cords are typically made of a highly flexible wire and often are made retractable for additional freedom of movement. There are two safety features that are usually built into the cord, and the user should not attempt to bypass them. The first, and most important, is a current limiting resistor (typically 1 Megohm) which prevents hazardous current from flowing through the cord in the event the wearer inadvertently contacts line voltage. The line voltage may find another path to ground, but the cord is designed to neither increase or reduce shock hazard for voltages under 250 volts. The second safety feature built into most cords is a breakaway connection to allow the user to exit rapidly in an emergency. This is usually accomplished by using a snap connector at the wrist strap end.
    Wrist-Strap.png
  3. Foot or Heel Grounders are frequently used where the technician needs more freedom of movement than the wrist strap and cord allow. The heel grounder is often made of a conductive rubber or vinyl and is worn over a standard shoe. It usually has a strap that passes under the heel for good contact and a strap of some type that is laid inside the shoe for contact to the wearer. Heel grounders must be used with some type of conductive or dissipative floor surface to be effective and should be worn on both feet to insure continuous contact with the floor. Obviously, lifting both feet from the floor while sitting will cause protection to be lost.Don’t forget to regularly check and verify your personnel grounding items:
PersonnelGroundingTesters.png
The Personnel Grounding Checklist

 

Summary

An effective static control program doesn’t have to be expensive or complex. The main concept is to minimize generation of static and to drain it away when it does occur, thereby lessening the chance for an ESD event to happen. The ingredients for an effective ESD program are:

  1. Education: to ensure that everyone understands the problem and the proper handling of sensitive devices.
  2. Workstation Grounding: use a dissipative working surface material and dissipative flooring materials as required.
  3. Personnel Grounding: using wrist straps with ground cords and/or foot-grounding devices.
  4. Follow-up to ensure Compliance: all elements of the program should be checked frequently to determine that they are working effectively.

The ESD “threat” is not likely to go away soon, and it is very likely to become an even greater hazard, as electronic devices continue to increase in complexity and decrease in size. By implementing a static control program now, you will be prepared for the more sensitive products that will be coming.

Stop by the Desco Industries Inc booth to see a demo of the SMP Static Management Program.

SMP-Screenshot.JPG

SCS Static Management Program (SMP) continuously monitors your ESD process control system throughout all stages of manufacturing. SMP captures data from SCS workstation, equipment and ESD event continuous monitors and allows you to pinpoint areas of concern and prevent ESD events. Quantifiable data allows you to see trends, become more proactive and prove the efficiency of your ESD process control system.

We will also be featuring a selection of our ESD monitoring equipment:

The exhibition area is open Monday, September 24 – Wednesday, September 26.

Peppermill Resort & Casino
2707 South Virginia Street
Reno, NV 89502

View the 2018 Program Guide HERE.

When the tip of a soldering iron comes into direct electrical contact with the pins of a sensitive component, there is a danger of voltage and/or current signal transfer between:

  • the grounded iron tip and the grounded PC board,
  • the ungrounded iron tip and the grounded PC board,
  • the grounded iron tip and the ungrounded PC board.

This can cause Electrical Overstress (EOS) and Electrostatic Discharge (ESD).

What is Electrical Overstress (EOS) and why is it important to detect?

EOS is the exposure of a component or PCB board to a current and/or voltage outside its operational range. This absolute maximum rating (AMR) differs from one device to the next and needs to be provided by the manufacturer of each component used during the soldering process. EOS can cause damage, malfunction or accelerated aging in sensitive devices.

ESD can be generated if a component and a board have different potentials and the voltage transfers from one to the other. When such an event happens, the component goes through EOS. ESD can influence EOS, but EOS can also be influenced by other signals.

Many people are familiar with Electrostatic Discharge (ESD) which is caused by the spontaneous discharge between two materials that are at different levels of ElectroStatic potential. Once electrostatic potential between the two materials is balanced, the ESD event will stop.

An EOS event on the other hand is created by voltage and/or current spikes when operating equipment; it can therefore last “as long as the originating signal exists”. [Source] The potentially never-ending stimulus of EOS is what makes it such a big concern in the electronics industry. Even though the voltage levels are generally much lower compared to an ESD event, applying this smaller voltage combined with a larger peak current over a long period of time will cause significant damage.

The high temperatures during an EOS event (created by the high current) can lead to visible EOS damage.

For more information on EOS and the differences to ESD, check-out this post.

Sources of EOS during the Soldering Process

When soldering components, it’s the tip of the soldering iron that comes into contact with the potentially sensitive device. Therefore, many people assume the soldering tip is the cause of ESD/EOS. However, the soldering iron and its tip are just some of the components used at a workbench. Other components on the bench like tweezers, wiring, test equipment, etc. can also be sources of ESD/EOS as they come into contact with the component or board.

There are many sources of EOS during the soldering process, which can include:

  • Loss of Ground
    The tip of an ungrounded soldering iron can accumulate a voltage of up to ½ of the iron’s supply voltage. It can be caused within the soldering iron itself or in power outlets.
  • Noise on Ground
    If a noise signal exists on ground, the tip of the solder iron will carry noise, too. These high-frequency signals, or electromagnetic interference (EMI), are disturbances that affect an electrical circuit, due to either electromagnetic induction or electromagnetic radiation emitted from an external source.
  • Noise on Power Lines
    Noise not only generates via ground but in power lines, too. Transformers and power supplies that convert voltages to 24V are the main culprit. They regularly carry high-frequency spikes which end up on the tip of the soldering iron.
  • Power Tools
    Although not technically related to the soldering process itself, it’s worth mentioning that the tips of power tools (e.g. electric screwdrivers) may not be properly grounded during rotation. This can result in high voltage on the tip itself.
  • Missing/Inadequate ESD Protection
    ESD can be a cause of EOS damage. Therefore, it is essential to have proper ESD Protection in place. A voltage on the operator or the PCB board can otherwise lead to an ESD Event and expose the components on the PCB to EOS.

Detecting EOS during the Soldering Process

EOS/ESD events can be detected, measured, and monitored during the soldering process using a variety of diagnostic tools.

Diagnostic Tools

  • SCS CTM051 Ground Pro Meter
    The SCS CTM051 Ground Pro Meter is a comprehensive instrument that measures ground impedance, AC and DC voltage on the ground as well as the presence of high-frequency noise or electromagnetic interference (EMI) voltage on the ground. It will alert if the soldering iron tip has lost its ground or has EMI voltage induced into the tip from an internal source on the soldering iron or from an EMI noisy ground or power lines.

    CTM051
    The SCS CTM051 Ground Pro Meter
  • SCS CTM048 EM Eye – ESD Event Meter
    The SCS CTM048 EM Eye – ESD Event Meter paired with the SCS CTC028 EM Field Sensor is a diagnostic tool for the detection and analysis of ESD events and electromagnetic fields and can identify sources of harmful ESD Events and electromagnetic interference (EMI).

    CTM048-21
    The SCS CTM048 EM Eye – ESD Event Meter paired with the SCS CTC028 EM Field Sensor

EOS Continuous Monitors

  • SCS CTC331-WW Iron Man® Plus Workstation Monitor
    The SCS CTC331-WW Iron Man® Plus Workstation Monitor is a single workstation continuous monitor which continuously monitors the path-to-ground integrity of an operator and conductive/dissipative worksurface and meets ANSI/ESD S20.20.The Iron Man® Plus Workstation Monitor is an essential tool when it comes to EOS detection. The unit is capable of detecting EOS on boards and alarms if an overvoltage (±5V or less) from a tool such as a soldering iron or electric screwdriver is applied to a circuit board under assembly.

    CTC331-WW
    The SCS CTC331-WW Iron Man® Plus Workstation Monitor

Data Acquisition

  • SCS Static Management Program
    SCS Static Management Program (SMP) continuously monitors the ESD parameters throughout all stages of manufacturing. It captures data from SCS workstation monitors, ground integrity monitors for equipment, ESD event and static voltage continuous monitors and provides real-time data of manufacturing processes.The SCS 770063 EM Aware Monitor, which is part of SMP, can help during the soldering process by monitoring ESD events and change of static voltage that may result in EOS. The EM Aware alarms (visual and audibly) locally and sends data to the database of the SMP system if any of the ESD parameters are detected to be higher than user-defined limits.

    770063.jpg
    The SCS 770063 EM Aware Monitor

Eliminating EOS during the Soldering Process

Once the source of ESD/EOS is known, there are many things that can be done to prevent it in the first place: 

1. Managing Voltage on a PCB board

PCB boards contain isolated conductors and non-conductive (insulative) components. The only way to handle voltage on a PCB board is neutralizing potential static charges through ionization. An ionizer creates great numbers of positively and negatively charged ions. Fans help the generated ions flow over the work area to neutralize static charges (or voltage) on a PCB board in a matter of seconds.

For more information on ionization and how to choose the right type of ionizer for your application, please read these posts.

2. Managing Voltage on an Operator

Static voltage on an operator can be eliminated through proper grounding using a workstation monitor, e.g. WS Aware or Iron Man Plus Monitor, and proper grounding hardware. Sitting personnel are required to wear wrist straps. A wrist strap consists of a conductive wristband which provides an electrical connection to skin of an operator, and a coil cord, which is connected to a known ground point at a workbench, a tool or a continuous monitor. While a wrist strap does not prevent generation of voltages, its purpose is to dissipate these voltages to ground as quickly as possible.

Sitting personnel can also use continuous monitors – not only is the operator grounded through the continuous monitor, but they also provides a number of additional advantages:

  • Immediate feedback should a wrist strap fail
  • Monitoring of operators and work stations
  • Detection of split-second failures
  • Elimination of periodic testing

This post provides more details on continuous monitors.

Moving or standing personnel are grounded via a flooring/footwear system. ESD Footwear (e.g. foot grounders) are designed to reliably contact grounded ESD flooring and provide a continuous path-to-ground by removing electrostatic voltages from personnel.

3. Managing Current

One solution is the “re-routing of ground connection and separation of “noisy” ground from a clean one” as “connecting soldering iron and the workbench to the “quiet” ground often result in lower level of transient signals.“. [Source]

This will greatly reduce the high-frequency noise that could cause EOS damage.

If the noise on power lines and ground cannot be reduced manually, then the use of noise filters becomes necessary to reduce the risk of EOS exposure during the soldering process. Utilizing these filters suppresses the noise on power lines and will allow the solder iron to use “clean” power only.

In his papers, Vladimir Kraz, explains the set-up of a soldering station using a noise filter in more detail.

Noise-Filter
Soldering Iron with Power Line EMI Filter [Source]

Conclusion

During the soldering process, current and voltage spikes between the solder tip and PCB can cause ESD/EOS. Sources are varied and can include:

  • Loss of Ground
  • Noise on Ground
  • Noise on Power Lines
  • Power Tools
  • Missing/Inadequate ESD Protection

ESD/EOS can be identified and controlled using diagnostic tools. SCS offers a number of tools that can detect current, voltage and EMI – all potentially leading to ESD and EOS.

Once the source of ESD/EOS is known, the next step is eliminating the source:

  • Managing voltage on a PCB board using ionizers.
  • Managing voltage on an operator using workstation monitors or foot grounders.
  • Managing current using noise filters.
  • Managing voltage on materials at the work bench.
  • Managing ESD generation during specific processes.
  • Managing grounding.

 For more information regarding this topic, please see below for additional references.

References: